New oxyfluorotellurates(IV):MTeO₃F (M = FeIII, GaIII and CrIII)

Jean-Paul Laval, N. Jennene Boukharrata, Philippe Thomas

To cite this version:

HAL Id: hal-00212001
https://hal.archives-ouvertes.fr/hal-00212001
Submitted on 30 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New oxyfluorotellurates(IV): MTeO$_3$F ($M = \text{Fe}^{\text{III}}, \text{Ga}^{\text{III}}$ and Cr^{III})

Jean Paul Laval,* Nefla Jennene Boukharrata and Philippe Thomas

Science des Procédés Céramiques et de Traitements de Surface, UMR-CNRS, 6638, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
Correspondence e-mail: jean-paul.laval@unilim.fr

Received 13 November 2007
Accepted 23 November 2007
Online 12 January 2008

The crystal structures of the new isomorphous compounds iron(III) oxyfluorotellurate(IV), FeTeO$_3$F, gallium(III) oxyfluorotellurate(IV), GaTeO$_3$F, and chromium(III) oxyfluorotellurate(IV), CrTeO$_3$F, consist of zigzag chains of MO$_2$F$_2$ distorted octahedra alternately sharing O–O and F–F edges and connected via TeO$_3$ trigonal pyramids. A full O/F anionic ordering is observed and the electronic lone pair of the Te IV cation is stereochemically active.

Comment

In recent years, a systematic investigation of tellurium(IV) fluorides and oxyfluorides has been performed in our laboratory in order to develop our knowledge in four directions: (i) synthesis of new phases of potential interest for their nonlinear optical properties; (ii) characterization of new structure types in order to determine the influence of the electronic lone pair of Te IV atoms (E) on their structural framework, especially in fluorides and oxyfluorides, compounds very sensitive to the stereochemical activity of this electronic lone pair; (iii) determination of the main rules governing the O/F anionic long-range or short-range ordering in oxyfluorides; and (iv) crystal growth in hydrofluoric acid medium of tellurates and oxyfluorotellurates(IV), which could be promising for nonlinear optics.

Following on from the structural characterization of the TeOF$_2$ (Guillet et al., 1999), Te$_2$O$_3$F$_2$ (Ider et al., 1996) and KTeO$_3$F (Laval et al., 2002) phases, this paper deals with the syntheses and crystal structure determination of a new isomorphous series of oxyfluorides, MTeO$_3$F, with $M = \text{Fe}^{\text{III}}, \text{Ga}^{\text{III}}$ and Cr^{III}.

The Te atom is bonded to three O atoms at distances of ca 1.9 Å (Tables 1 and 2). It occupies the center of a trigonal pyramid with the stereochemically active electronic lone pair E pointing in the direction of the fourth corner (Fig. 1). If three weak extra bonds with lengths of ca 2.7 Å are considered, the anionic polyhedron can be described as a distorted octahedron. The lone pair E occupies the volume formed between the Te atom and the weakly bonded anions. The M atom is sixfold coordinated, slightly shifted from the center of a distorted MO$_2$F$_2$ octahedron (Fig. 2, and Tables 1 and 2). Bond-valence calculations (Brown, 1981) are consistent with the description M^{III}TeIV(O$_2$)$^-$,F$^-$ showing a full O/F ordering (Tables 3 and 4).

FeTeO$_3$F, GaTeO$_3$F and CrTeO$_3$F (with lattice parameters refined on the basis of powder X-ray diffraction data of $a = 5.028$ (1) Å, $b = 5.073$ (1) Å, $c = 12.307$ (2) Å and $\beta = 97.40$ (4)$^\circ$, using the refinement program CHEKCELL (Laugier & Bochu, 2000)] are isomorphous, with ‘zigzag’ chains of MO$_2$F$_2$ ($M = \text{Fe}^{\text{III}}, \text{Ga}^{\text{III}}$ and Cr^{III}) distorted octahedra sharing alternately O–O and F–F edges and interconnected via TeO$_3$ trigonal pyramids (Fig. 3a). A projection on to (010) shows large tunnels parallel to [010], towards which point the lone pairs E (Fig. 3b). The description considering the Te anionic environment as a distorted octahedron (Fig. 1) allows an interesting comparison with the α-PbO$_2$ (Fig. 4) structure (Hyde & Andersson, 1989). Indeed, the structure of MTeO$_3$F ($M = \text{Fe}^{\text{III}}, \text{Ga}^{\text{III}}$ and Cr^{III}; Fig. 3a) is thus based on parallel zigzag chains of corner-sharing octahedra, two adjacent chains being shifted by $a/2$ along the [001] direction. The idealized MTeO$_3$F structure appears as a superstructure of α-PbO$_2$ with doubling of the c axis (Table 5).

However, the hexagonal close packed (hcp) anionic array and...
the positions of the cations are more distorted than in α-PbO$_2$ as a consequence of the cationic ordering, of the difference in size between M^{III} and TeIV cations, and of the stereochemical activity of the lone pair E. A strong monoclinic distortion of the lattice also occurs in the MTeO$_3$F phases, but the analogy is worth noting.

The new MTeO$_3$F structure type is important because it shows that oxyfluorotellurates associating the TeIV cation with trivalent cations presenting octahedral coordination can adopt a structure type derived from a classical oxide such as α-PbO$_2$, with a distorted hcp anionic array and full cationic ordering in parallel zigzag rows. It also corresponds to an intergrowth of MOF and TeO$_2$ slabs with F^- anions only bonded to M^{III} cations. There is no strong Te–F bond, sensitive to hydrolysis, so this kind of phase is air stable and could be of interest for applications in optical devices. Moreover, the unusual environment of M^{III} cations, interconnected by alternate F–F and O–O edges, offers the potential of promising magnetic properties.

Experimental

Fe$_2$O$_3$, Cr$_2$O$_3$, and Ga$_2$O$_3$ were commercial products (Aldrich, 99.9%) and TeO$_2$ was prepared by decomposition of commercial H$_2$TeO$_6$ (Aldrich, 99.9%) at 823 K under flowing oxygen. FeTeO$_3$F and GaTeO$_3$F were prepared in two steps: first an intimate mixture (mol\%) of $\frac{1}{2}$Fe$_2$O$_3$–4TeO$_2$ (or $\frac{1}{2}$Ga$_2$O$_3$–2TeO$_2$) was dissolved in hydrofluoric acid (40\%) in a Teflon beaker and heated at 453 K, and then, after slow evaporation, the product was crushed and heated in a sealed platinum tube. The temperature was progressively increased to 723 K (923 K for the Ga phase) (5 K min$^{-1}$), kept stable for 96 h, slowly decreased to 673 K (0.05 K min$^{-1}$ for Fe and 0.1 K min$^{-1}$ for Ga) and finally stabilized for 10 h. After that, the tube was water-quenched to room temperature. Green crystals of FeTeO$_3$F and colorless crystals of GaTeO$_3$F, air stable and suitable for X-ray diffraction study, were obtained. The chromium phase was obtained in powder form by direct heating of a Cr$_2$O$_3$–CrF$_3$–3TeO$_2$ mixture in a sealed platinum tube. The temperature was progressively increased to 973 K (5 K min$^{-1}$) and kept stable for 96 h. The tube was then water-quenched.

Compound (I)

Crystal data

FeTeO$_3$F
$M_r = 250.45$
Monoclinic, P_2_1/n
$a = 5.0667 (7)$ Å
b = 5.0550 (7) Å
c = 12.5975 (15) Å
$\beta = 97.630$ (13)$^\circ$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(SADABS; Bruker 2004)
$\min = 0.337$, $\max = 0.763$
10518 measured reflections
903 independent reflections
R int = 0.058

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.021$
$wR(F^2) = 0.036$
$S = 0.99$
903 reflections
56 parameters
Δ\&min = 0.88 e Å$^{-3}$
Δ\&max = −0.95 e Å$^{-3}$

Figure 4

The ideal structure of α-PbO$_2$ for comparison with the structure of FeTeO$_3$F (see Fig. 3a).
Table 1
Selected bond lengths (Å) for (I).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te1—O3</td>
<td>1.870 (2)</td>
</tr>
<tr>
<td>Te1—O1</td>
<td>1.884 (2)</td>
</tr>
<tr>
<td>Te1—O2</td>
<td>1.904 (2)</td>
</tr>
<tr>
<td>Te1—O1′</td>
<td>2.053 (2)</td>
</tr>
<tr>
<td>Te1—O3′</td>
<td>2.746 (2)</td>
</tr>
<tr>
<td>Te1—F1</td>
<td>2.850 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x+1, y−1/2, −z+1/2 (ii) −x+1, y−1/2, −z+1/2 (iii) −x+1, −y+2, −z+1.

Table 2
Selected bond lengths (Å) for (II).

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te1—O3</td>
<td>1.865 (2)</td>
</tr>
<tr>
<td>Te1—O1</td>
<td>1.884 (2)</td>
</tr>
<tr>
<td>Te1—O2</td>
<td>1.918 (2)</td>
</tr>
<tr>
<td>Te1—O1′</td>
<td>2.033 (2)</td>
</tr>
<tr>
<td>Te1—O3′</td>
<td>2.731 (2)</td>
</tr>
<tr>
<td>Te1—F1</td>
<td>2.830 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x+1, y−1/2, −z+1/2 (ii) −x+1, y−1/2, −z+1/2 (iii) −x+1, −y+2, −z+1.

Table 3
Bond valences for (I).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Valence</th>
<th>(V_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te1</td>
<td>1.286/0.144</td>
<td>2.03</td>
</tr>
<tr>
<td>O2</td>
<td>1.218</td>
<td>2.18</td>
</tr>
<tr>
<td>O3</td>
<td>1.355/0.125</td>
<td>2.04</td>
</tr>
<tr>
<td>F1</td>
<td>0.071</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Table 4
Bond valences for (II).

<table>
<thead>
<tr>
<th>Atom</th>
<th>Valence</th>
<th>(V_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga1</td>
<td>1.286/0.17</td>
<td>2.06</td>
</tr>
<tr>
<td>Te1</td>
<td>1.173</td>
<td>2.27</td>
</tr>
<tr>
<td>O2</td>
<td>1.354/0.13</td>
<td>2.10</td>
</tr>
<tr>
<td>O3</td>
<td>0.096</td>
<td>0.96</td>
</tr>
<tr>
<td>F1</td>
<td>0.421</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5
Comparison of lattice parameters (Å) of FeTeO3F and α-PbO2.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeTeO3F</td>
<td>5.067</td>
<td>4.989</td>
<td>12.398</td>
</tr>
<tr>
<td>α-PbO2</td>
<td>5.466</td>
<td>5.947</td>
<td>12.398</td>
</tr>
</tbody>
</table>

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3115). Services for accessing these data are described at the back of the journal.

References