Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Effective descent for differential operators

Abstract : A theorem of N. Katz (1990) [Ka], p. 45, states that an irreducible differential operator L over a suitable differential field k, which has an isotypical decomposition over the algebraic closure of k, is a tensor product L = M ⊗k N of an absolutely irreducible operator M over k and an irreducible operator N over k having a finite differential Galois group. Using the existence of the tensor decomposition L = M⊗N, an algorithm is given in É. Compoint and J.-A. Weil (2004) [C-W], which computes an absolutely irreducible factor F of L over a finite extension of k. Here, an algorithmic approach to finding M and N is given, based on the knowledge of F . This involves a subtle descent problem for differential operators which can be solved for explicit differential fields k which are C1-fields.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-unilim.archives-ouvertes.fr/hal-00637676
Contributeur : Véronique Maury <>
Soumis le : mercredi 2 novembre 2011 - 16:14:43
Dernière modification le : jeudi 11 janvier 2018 - 06:26:18

Identifiants

Collections

Citation

Elie Compoint, Marius van der Put, Jacques-Arthur Weil. Effective descent for differential operators. Journal of Algebra, Elsevier, 2010, 324 (1), pp.146-158. ⟨10.1016/j.algebra.2010.02.040⟩. ⟨hal-00637676⟩

Partager

Métriques

Consultations de la notice

142