Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

The most powerful multivariate normality test for plant genomics and dynamics data sets

Abstract : Data analysis methods like analysis of variance and regression in plant sciences depend on the assumption that the biological data are normal. Using a normality test is the best way to check whether the distribution is normal or not. Plant genomic and dynamic studies generate data with leptokurtic distribution and the most appropriate normality test is the Shapiro-Francia one. However multivariate extensions of this test have not been designed yet and plant data matrix cannot be performed efficiently or without bias. Thus, our analysis focused on the development of an easy-using algorithm to extend the application of the Shapiro-Francia test to multivariate data matrix in plant studies.
Liste complète des métadonnées

https://hal-unilim.archives-ouvertes.fr/hal-00654531
Contributeur : Claire Douady <>
Soumis le : jeudi 22 décembre 2011 - 10:50:15
Dernière modification le : lundi 24 septembre 2018 - 09:42:27

Identifiants

Citation

David Delmail, Pascal Labrousse, Michel Botineau. The most powerful multivariate normality test for plant genomics and dynamics data sets. Ecological Informatics, Elsevier, 2011, 6 (2), pp.125-126. ⟨10.1016/j.ecoinf.2011.01.003⟩. ⟨hal-00654531⟩

Partager

Métriques

Consultations de la notice

282