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A FULLY-DISCRETE SEMI-LAGRANGIAN SCHEME FOR A
FIRST ORDER MEAN FIELD GAME PROBLEM

E. CARLINI ∗ AND F. J. SILVA †

Abstract. In this work we propose a fully-discrete Semi-Lagrangian scheme for a first order
mean field game system. We prove that the resulting discretization admits at least one solution
and, in the scalar case, we prove a convergence result for the scheme. Numerical simulations and
examples are also discussed.
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1. Introduction. Initiated by the seminal work of Aumann [7], models to
study equilibria in games with a large number of players have become a important
research line in the fields of Economics and Applied Mathematics. In this direction,
Mean Field Games (MFG) models were recently introduced by J-M. Lasry and P.-L.
Lions in [20, 21, 22] in the form of a new system of Partial Differential Equations
(PDEs). Under some assumptions, the solution of this system captures the main
properties of Nash equilibria for differential games with a very large number of
identical “small” players. For a survey of MFG theory and its applications, we
refer the reader to [12, 18] and the lectures of P-L. Lions at the Collège de France
[24]. The evolutive PDE system introduced in [21], with variables (v,m), is of the
form:

−∂tv(x, t)− σ2∆v(x, t) +H(x,Dv(x, t)) = F (x,m(t)), in R
d × (0, T ),

∂tm(x, t)− σ2∆m(x, t)− div
(

∂pH(x,Dv(x, t))m(x, t)
)

= 0, in R
d × (0, T ),

v(x, T ) = G(x,m(T )) for x ∈ R
d , m(0) = m0 ∈ P1,

(1.1)

where σ ∈ R, P1 denotes the space of probability measures on R
d and F : Rd×P1 →

R, G : Rd × P1 → R and H : Rd × R
d → R are given functions. The Hamiltonian

H is supposed to be convex with respect to the second variable p. An important
feature of the above system is its forward-backward structure: We have a backward
Hamilton-Jacobi-Bellman (HJB) equation, i.e. with a terminal condition, coupled
with a forward Fokker-Planck equation with initial datum m0.

Under rather general assumptions, it can be proved that if σ 6= 0 then (1.1)
admits regular solutions (see [22, Theorem 2.6]). Based on this fact, finite differences
schemes have been thoroughly analyzed in the papers [4, 1, 2]. When H(x, p) is
quadratic with respect to p, specific methods have been proposed in [17, 19].

In this work, we are interested in the numerical analysis of the first order case
(σ = 0) with quadratic Hamiltonian H(x, p) = 1

2 |p|2. In this case, system (1.1)
takes the form

−∂tv(x, t) +
1
2
|Dv(x, t)|2 = F (x,m(t)), in R

d × (0, T ),

∂tm(x, t)− div
(

Dv(x, t)m(x, t)
)

= 0, in R
d × (0, T ),

v(x, T ) = G(x,m(T )) for x ∈ R
d , m(0) = m0 ∈ P1.

(1.2)

The second equation (i.e. the Fokker-Planck equation with σ = 0) is called the
continuity equation and describes the transport of the initial measure m0 by the
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flow induced by −Dv(·, ·). When F and G are non-local and regularizing operators
(see [22]), the existence of a solution (v,m) of (1.2) can be proved by a fixed point
argument (see [12, 24]). However, the numerical approximation of (v,m) is very
challenging since, besides the forward-backward structure of (1.2), we can expect
only Lipchitz regularity for v and L∞ regularity for m (see e.g. [12]).

Although several numerical methods have been analyzed for each one of the
equations in (1.2) (see e.g. the monographs [15, 29, 25] and the references therein
for the HJB equation and [26, 30] for the continuity equation), when the coupling
between both equations is present, the authors are aware only of references [16],
for the scalar case d = 1, and [3], for the multidimensional case. However, in
both references the structure of the system is forward-forward, i.e. both equations
have initial conditions. This fact changes completely the theoretical and numerical
analysis of the problem. As a matter of fact, for example in [3], the key property
for convergence result of the proposed numerical scheme is a one side Lipschitz
condition for Dv(·, ·) of the form:

∃C > 0 such that ∀t ∈ [0, T ], 〈Dv(x, t)−Dv(y, t), x− y〉 ≥ −C|x− y|2. (1.3)

By the results in [27], condition (1.3) assures the stability of the so-called Fillipov
characteristics and of the associated measure solutions of the continuity equation,
which are the key to obtain their convergence result. Unfortunately, in our case
(1.3) corresponds to the semiconvexity of v, which does not holds for an arbitrary
time horizon T (see [11]).

Our line of research follows the ideas in [10], where a semi-discrete in time Semi-
Lagrangian scheme is proposed to approximate (1.2) and a convergence result is
obtained. However, since the space variable is not discretized, the resulting scheme
cannot be simulated. In this paper we propose a fully-discrete Semi-Lagrangian
scheme for (1.2) and we study its main properties. We prove that the fully-discrete
problem admits at least one solution and, for the case d = 1, we are able to prove
the convergence of the scheme to a solution (v,m) of (1.2), when the discretization
parameters tend to zero in a suitable manner. The key point of the proof is a weak
semiconvavity property for the discretized solutions. Let us point out that our
approximation scheme is presented in a general dimension d and several properties
are proved in this generality. However, since in general (1.3) does not hold, uniform
estimates in the L∞ norm for the solutions of the scheme seems to be unavoidable
in order to prove the convergence (see [12] for similar arguments regarding the
vanishing viscosity approximation of (1.2)). Since we are able to prove these bounds
only for d = 1, our convergence result for the fully-discrete scheme is valid only in
this case.

The paper is organized as follows: In Section 2 we state our main assumptions,
we collect some useful properties about semiconcave functions and we recall the
main existence and uniqueness results for (1.2). In Section 3 we revisit the semi-
discrete in time approximation of [10] and we improve some results, for example
we prove uniform L∞ bounds for the solutions of the semi-discrete scheme, which
improves slightly the convergence result of [10]. Section 4 is devoted to the fully-
discrete scheme. We establish the main properties of the scheme and we prove our
main results: The fully-discrete scheme admits at least one solution and, if d = 1
and the discretization parameters tend to zero in a suitable manner, every limit
point of the solutions of the scheme is a solution of (1.2). Finally, in Section 5 we
display some numerical simulations in the case of one space dimension.

2. Preliminaries.

2.1. Basic assumptions and existence and uniqueness results for (1.2).
We denote by P1 the set of the probability measuresm such that

∫

Rd |x|dm(x) <∞.
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The set P1 is be endowed with the Kantorovich-Rubinstein distance

d1(µ, ν) = sup

{
∫

Rd

φ(x)d[µ− ν](x) ; φ : Rd → R is 1-Lipschitz

}

. (2.1)

Given a measure µ ∈ P1 we denote by supp(µ) its support. In what follows, in
order to simplify the notation, the operator D (resp. D2) will denote the derivative
(resp. the second derivative) with respect to the space variable x ∈ R

d. We suppose
that the functions F,G : Rd × P1 → R and the measure m0, which are the data of
(1.2), satisfy the following assumptions:

(H1) F and G are continuous over Rd × P1.

(H2) There exists a constant c0 > 0 such that for any m ∈ P1

‖F (·,m)‖C2 + ‖G(·,m)‖C2 ≤ c0,

where ‖f(·)‖C2 := supx∈Rd{|f(x)|+ |Df(x)|+ |D2f(x)|}.
(H3) The initial condition m0 ∈ P1 is absolutely continuous with respect to the
Lebesgue measure, with density still denoted as m0, and satisfies supp(m0) ⊂
B(0, c1) and ‖m0‖∞ ≤ c1, for some c1 > 0 .

As a general rule in this paper, given an absolutely continuous measure (w.r.t
the Lebesgue measure in R

d) m ∈ P1, its density will still be denoted by m. Let us
recall the definition of a solution (v,m) of (1.2) (see [21, 22]).

Definition 2.1. The pair (v,m) ∈ W 1,∞
loc (Rd × [0, T ]) × L1(Rd × (0, T )) is

a solution of (1.2) if the first equation is satisfied in the viscosity sense, while
the second one is satisfied in the distributional sense. More precisely, for every
φ ∈ C∞

c

(

(Rd × [0, T )
)

∫

Rd

φ(x, 0)m0(x)dx+

∫ T

0

∫

Rd

[∂tφ(x, t)− 〈Dv(x, t), Dφ(x, t)〉]m(x, t)dxdt = 0.

(2.2)

Remark 2.1. Classical arguments (see e.g. [5]) imply that (2.2) is equivalent
to

∫

Rd

φ(x)m0(x)dx−
∫ t

0

∫

Rd

〈Dv(x, s), Dφ(x)〉m(x, s)dxds = 0, (2.3)

for all t ∈ [0, T ] and φ ∈ C∞
c (Rd).

The following existence result is proved in [24, 12].

Theorem 2.2. Under (H1)-(H3) there exists at least a solution (v,m) of
(1.2).

A uniqueness result can be obtained assuming

(H4) The following monotonicity conditions hold true

∫

Rd [F (x,m1)− F (x,m2)] d[m1 −m2](x) ≥ 0 for all m1,m2 ∈ P1
∫

Rd [G(x,m1)−G(x,m2)] d[m1 −m2](x) ≥ 0 for all m1,m2 ∈ P1.
(2.4)

We have (see [24, 12]):

Theorem 2.3. Under (H1)-(H4) system (1.2) admits a unique solution
(v,m).
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2.2. Standard semiconcavity results. In the proof of Theorem 2.2, as well
as in the the proof of our main results, the concept of semiconcavity plays a crucial
role. For a complete account of the theory and its applications to the solution of
HJB equations, we refer the reader to the book [11].

Definition 2.4. We say that w : R
d → R is semiconcave with constant

Cconc > 0 if for every x1, x2 ∈ R
d, λ ∈ (0, 1) we have

w(λx1 + (1− λ)x2) ≥ λw(x1) + (1− λ)w(x2)− λ(1− λ)
Cconc

2
|x1 − x2|2. (2.5)

A function w is said to be semiconvex if −w is semiconcave.

Recall that for w : Rd → R the super-differential D+w(x) at x ∈ R
d is defined

as

D+w(x) :=

{

p ∈ R
d ; lim sup

y→x

w(y)− w(x)− 〈p, y − x〉
|y − x| ≤ 0

}

. (2.6)

We collect in the following Lemmas some useful properties of semiconcave functions
(see [11]).

Lemma 2.5. For a function w : Rd → R, the following assertions are equivalent:

(i) The function w is semiconcave, with constant Cconc.

(ii) For all x, y ∈ R
d, we have

w(x+ y) + w(x− y)− 2w(x) ≤ Cconc|y|2.

(iii) For all x, y ∈ R
d and p ∈ D+w(x), q ∈ D+w(y)

〈q − p, y − x〉 ≤ Cconc|x− y|2. (2.7)

(iv) Setting Id for the identity matrix, we have that D2w ≤ CconcId in the sense of
distributions.

Lemma 2.6. Let w : Rd → R be semiconcave. Then:

(i) w is locally Lipschitz.

(ii) If wn is a sequence of semiconcave functions (with the same semiconcavity
constant) converging point-wisely to w, then the convergence is locally uniform and
Dwn(·) → Dw(·) a.e. in R

d.

2.3. Representation formulas for the solutions of the HJB and the
continuity equations. Let µ ∈ C([0, T ];P1) be given and let us denote by v[µ]
for the unique viscosity solution of

−∂tv(x, t) + 1
2 |Dv(x, t)|2 = F (x, µ(t)), in R

d × (0, T ),

v(x, T ) = G(x, µ(T )) in R
d.

}

(2.8)

Under assumptions (H1)-(H2), standard results (see e.g. [8]) yield that for
each (x, t) ∈ R

d × [0, T ], the following representation formula for v[µ](x, t) holds
true

v[µ](x, t) = infα∈L2([t,T ];Rd)

∫ T

t

[

1
2
|α(s)|2 + F (Xx,t[α](s), µ(s))

]

ds

+G(Xx,t[α](T ), µ(T )),

where Xx,t[α](s) := x−
∫ s

t
α(r)dr for all s ∈ [t, T ].



















(CP)x,t[µ]

We set Ax,t[µ] for the set of optimal controls α of (CP)x,t[µ], i.e. for the set of
solutions of (CP)x,t[µ]. Classical arguments imply that for all (x, t) the set Ax,t[µ]
is non empty.
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We now collect some important well known properties of problem (CP)x,t[µ]
(see e.g. [11, 12]).

Proposition 2.7. Under (H1)-(H2), The value function v[µ] satisfies the
following properties:

(i) We have that (x, t) → v[µ](x, t) is Lipchitz, with a Lipschitz constant independent
of µ.

(ii) For all t ∈ [0, T ] the function v[µ](·, t) ∈ R is semiconcave, uniformly with
respect to µ.

(iii) There exists a constant c2 > 0 (independent of (µ, x, t)) such that

‖α‖L∞([t,T ];Rd) ≤ c2 for all α ∈ Ax,t[µ].

(iv) For all (x, t) and α ∈ Ax,t[µ], we have that

α(t) ∈ D+v[µ](x, t). (2.9)

(v) For all t ∈ [0, T ] the function v[µ](·, t) is differentiable at x iff there exists
α ∈ Ax,t[µ] such that Ax,t[µ] = {α}. In this case, we have that

Dv[µ](x, t) = α(t). (2.10)

(vi) For every s ∈ (t, T ] and α ∈ Ax,t[µ], we have that v[µ](·, ·) is differentiable at
(Xx,t[α](s), s).

Now, we define a measurable selection of optimal flows, i.e. of optimal tra-
jectories for the family of problems {(CP)x,t[µ] ; (x, t) ∈ R

d × [0, T ]}. Classical
arguments (see [12, 6]) show that the multivalued map (x, t) → Ax,t[µ], admits a
measurable selection αx,t[µ](·). Given (x, t) the flow Φ[µ](x, t, ·) is defined as

Φ[µ](x, t, s) := x−
∫ s

t

αx,t[µ](r)dr for all s ∈ [t, T ]. (2.11)

By Proposition 2.7(v)-(vi), omitting the dependence on µ for notational conve-
nience, Φ(x, t, ·) satisfies

∂
∂sΦ(x, t, s) = −Dv[µ](Φ(x, t, s), s) for s ∈ (t, T ),

Φ(x, t, t) = x.

}

(2.12)

For all t ∈ [0, T ], let us define m[µ](t) as the initial measure m0 transported by the
flow Φ[µ]. More precisely,

m[µ](t) := Φ[µ](·, 0, t)♯m0, (2.13)

i.e.

m[µ](t)(A) = m0

(

Φ[µ]−1(·, 0, t)(A)
)

for all A ∈ B(Rd),

or equivalently, for all bounded and continuous φ : Rd → R,

∫

Rd

φ(x)d [m[µ](t)] (x) =

∫

Rd

φ (Φ[µ](x, 0, t)) dm0(x).

Since Φ[µ](x, ·, ·) satisfies the semigroup property, omitting the dependence on µ for
simplicity,

Φ(x, s, t) = Φ(Φ(x, s, r), r, t) for all r ∈ [s, t],
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we easily check that

m[µ](t) := Φ(·, r, t)♯ [Φ(·, 0, r)♯m0] = Φ(·, r, t)♯ [m[µ](r)] for all r ∈ [s, t]. (2.14)

The fundamental result is the following

Proposition 2.8. There exists a constant c3 > 0 (independent of (µ, x, y, r, t)),
such that

|Φ(x, r, t)− Φ(y, r, t)| ≥ c3|x− y| for all 0 ≤ r ≤ t, and x, y ∈ R
d.

The key in the proof of the above Proposition (see e.g. [12, Lemma 4.13]) is the
semiconcavity of v[µ](·, t), which is uniform w.r.t µ, and Gronwall’s Lemma. As a
consequence we have that (see e.g. [12, Theorem 4.18 and Lemma 4.14]).

Theorem 2.9. We have that m[µ](·) is the unique solution (in the distribu-
tional sense) of

∂tm(x, t)− div
(

Dv[µ](x, t)m(x, t)
)

= 0, in R
d × (0, T ),

m(x, 0) = m0(x) in R
d.

}

(2.15)

Moreover, there exists a constant c4 > 0, independent of µ, such that m[µ] satisfies
the following properties:

(i) For all t ∈ [0, T ], the measure m[µ](t) is absolutely continuous (with density still
denoted by m[µ](t)), has a support in B(0, c4) and ‖m[µ](t)‖∞ ≤ c4.

(ii) For all t, t′ ∈ [0, T ], we have that

d1(µ(t), µ(t
′)) ≤ c4|t− t′|.

Remark 2.2. In the proof of the above result (see [12]) Proposition 2.8 is cru-
cial in order to show that the transported measure m[µ](·) is absolutely continuous,
as m0, and its density remains uniformly bounded in L∞(Rd).

Theorem 2.9 (i)-(ii) implies that m[µ](·) ∈ C([0, T ];P1). We thus see that (1.2)
is equivalent to find m ∈ C([0, T ];P1), such that

m(t) = Φ[m](·, 0, t)♯m0 for all t ∈ [0, T ]. (MFG)

3. A revisit to the semi-discrete in time approximation. In this section
we review the semi-discrete in time approximation studied in [10] and we improve
some results.

3.1. Semi-discretization of the HJB equation. Given h > 0 and N ∈ N

such that Nh = T , we set tk := kh for k = 0, . . . , N . Let us define the following
spaces:

KN :=
{

µ = (µℓ)
N
ℓ=0 : such that µℓ ∈ P1 for all ℓ = 0, . . . , N

}

,

Ak :=
{

α = (αℓ)
N−1
ℓ=k : such that αℓ ∈ R

d
}

for k = 0, . . . , N − 1.

For µ ∈ KN and k = 1, . . . , N , we consider the following semi-discrete approxima-
tion of (CP)x,t[µ]

vk[µ](x) := inf
α∈Ak

{

N−1
∑

ℓ=k

[

1
2
|αℓ|

2 + F (Xx,k
ℓ [α], µℓ)

]

h+G(Xx,k
N [α], µN )

}

,

where X
x,k
ℓ+1[α] := X

x,k
ℓ [α]− hαℓ for ℓ = k . . . , N − 1,

X
x,k
k [α] := x































(CP)x,k
h

[µ].
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Note that no discretization is performed in the space variable. As for the

continuous time problem, we have that (CP)x,kh [µ] admits at least a solution for all

(x, k). We set by Ak[µ](x) ⊆ Ak for the set of optimal solutions of (CP)x,kh [µ], i.e.
the set of discrete optimal controls. By the discrete dynamic programming principle
(see e.g. [8]), vk[µ](·) can be recursively calculated as

vk[µ](x) = inf
α∈Rd

{

vk+1[µ](x− hα) + 1
2
h|α|2

}

+ hF (x, µk), k = 0, . . . , N − 1,

vN [µ](x) = G(x, µN ),







(3.1)

which is a “semi-discrete in time version” of (2.8). Let us set,

vh[µ](x, t) := v[t/h][µ](x) for all t ∈ [0, T ].

for the classical “extension” of vk[µ](·) to a function defined on R
d × [0, T ]. Now,

we provide the “discrete” analogous results to those of Proposition 2.7.

Proposition 3.1. For all h > 0, we have:

(i) For any t ∈ [0, T ], the function vh[µ](·, t) is Lipschitz continuous, with a Lipschitz
constant independent of µ.

(ii) For all t ∈ [0, T ] the function vh[µ](·, t) is semiconcave, uniformly in (h, µ, t).

(iii) There exists a constant c5 > 0 (independent of (µ, h, x, k)) such that

max
ℓ=k,...,N−1

|αℓ| ≤ c5 for all α ∈ Ak[µ](x).

(iv) For all x ∈ R
d, k = 0, . . . , N − 1 and α ∈ Ak[µ](x), we have

αℓ + hDF
(

Xx,k
ℓ [α], µℓ

)

∈ D+vh[µ]
(

Xx,k
ℓ [α], tℓ

)

for ℓ = k, . . . , N − 1.

(v) We have that vh[µ](·, t) is differentiable at x iff for k = [t/h] there exists α ∈ Ak

such that Ak[µ](x) = {α}. In that case, the following holds:

Dvh[µ](x, t) = αk + hDF (x, µk).

(vi) Given (x, t) and α ∈ Ak[µ](x), with k = [t/h], we have that for all s ∈ [tk+1, T ],

the function vh[µ](·, s) is differentiable at Xx,k
ℓ [α], with ℓ = [s/h].

Proof. We only prove (iv) since the other statements are proved in [10]. For
notational convenience, we omit the µ argument and we prove the result for ℓ = k,
since for ℓ = k + 1, . . . , N the assertion follows from (v)-(vi). Let x, y ∈ R

d and
σ ≥ 0. Since α ∈ Ak[µ](x), we have

vk(x+ σy) ≤
N−1
∑

ℓ=k

[

1
2 |αℓ|2 + F

(

Xx+σy,k
ℓ [α], µℓ

)]

h+G
(

Xx+σy,k
N [α], µN

)

,

with equality for σ = 0. Therefore,

vk(x+ σy)− vk(x) ≤ h

N−1
∑

ℓ=k

[

F
(

Xx+σy,k
ℓ [α], µℓ

)

− F
(

Xx,k
ℓ [α], µℓ

)]

+G
(

Xx+σy,k
N [α], µN

)

−G
(

Xx,k
ℓ [α], µN

)

.

(3.2)

On the other hand, the optimality condition for α yields

αk = h

N−1
∑

ℓ=k+1

DF
(

Xx,k
ℓ [α], µℓ

)

+DG
(

Xx,k
ℓ [α], µN

)

.
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Combining with (3.2) and taking the limit as σ → 0, gives

lim sup
σ→0

vk(x+ σy)− vk(x)

σ
− 〈αk + hDF (x, µk), y〉 ≤ 0,

which, by [11, Proposition 3.15 and Theorem 3.2.1], implies the result.

Given (x, k) and α ∈ Ak[µ](x) we set

αk[µ](x) := αk. (3.3)

Proposition 3.1(iv) implies that

αk[µ](x) ∈ D+vh[µ](x, tk)− hDF (x, uk). (3.4)

A straightforward computation shows that αk[µ](x) solves, for each (x, k), the prob-
lem defined in (3.1). Moreover, by Proposition 3.1(v)-(vi), the following relation
holds true

αℓ = αℓ[µ]
(

Xx,k
ℓ [α]

)

for all ℓ = k, . . . , N − 1. (3.5)

3.2. Semi-discretization of the continuity equation. Let αx,k[µ] ∈ Ak

be a measurable selection of the multifunction (x, k) → Ak[µ](x). Given this mea-

surable selection, we set αk[µ](x) = αx,k
k [µ], as in (3.3). By (3.4) - (3.5), there exists

a measurable function (x, k) → pk[µ](x) ∈ R
d such that pk[µ](x) ∈ D+vk[µ](x) and

for all time iterations ℓ = k, . . . , N we have

αℓ[µ]
(

Xx,k
ℓ [αx,k[µ]]

)

= pℓ[µ]
(

Xx,k
ℓ [αx,k[µ]]

)

− hDF
(

Xx,k
ℓ [αx,k[µ]], µℓ

)

. (3.6)

Moreover, Proposition 3.1(v)-(vi) implies that for ℓ = k + 1, . . . , N

pℓ[µ]
(

Xx,k
ℓ [αx,k

ℓ [µ]
)

= Dvℓ[µ]
(

Xx,k
ℓ [αx,k

ℓ [µ]]
)

for all x ∈ R
d (3.7)

and

pk[µ] (x) = Dvk[µ] (x) for a.a. x ∈ R
d. (3.8)

Given (x, k1), the discrete flow Φk1,·[µ](x) ∈ R
(N−k)×d is defined as

Φk1,k2
[µ](x) := x− h

k2−1
∑

ℓ=k1

αx,k1

ℓ [µ] for all k2 ≥ k1. (3.9)

Equivalently, by (3.6), for all k1 ≤ k2 ≤ k3,

Φk1,k3
[µ](x) := x− h

∑k3−1
ℓ=k1

αℓ[µ]
(

Xx,k1

ℓ [αx,k1 [µ]]
)

,

= Φk1,k2
[µ](x)− h

∑k3−1
ℓ=k2

αℓ[µ]
(

Xx,k1

ℓ [αx,k1 [µ]]
)

.
(3.10)

In particular, for all k1 ≤ k2,

Φk1,k2+1[µ](x) = Φk1,k2
[µ](x)− hαk2

[µ] (Φk1,k2
[µ](x)) . (3.11)

The following result, analogous to Proposition 2.8, is an important improvement
of [10, Lemma 3.6].
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Proposition 3.2. There exists a constant c6 > 0 (independent of µ and small
enough h) such that for all k = 1, ..., N and x, y ∈ R

d we have

|Φ0,k[µ](x)− Φ0,k[µ](y)| ≥ c6|x− y|. (3.12)

Thus, Φ0,k[µ](·) is invertible in Φ0,k[µ](R
d) and the inverse Υ0,k[µ](·) is 1/c6-

Lipschitz.
Proof. For notational convenience, let us set Φk = Φ0,k[µ](x) and Ψk =

Φ0,k[µ](y). Expression (3.11) implies that

|Φk+1 −Ψk+1|2 ≥ |Φk −Ψk|2 − 2h [αk[µ](Φk)− αk[µ](Ψk)] · (Φk −Ψk). (3.13)

By (3.6) we have (omitting the dependence on µ)

αk(Φk)− αk(Ψk) = pk(Φk)− pk(Ψk)− h [DF (Φk)−DF (Ψk)] .

By the semiconcavity of vk[µ](·) and the semiconvexity of F (·, µ(tl)), Lemma 2.5(iii)
gives

[αk(Φk)− αk(Ψk)] · (Φk −Ψk) ≤ c(1 + h) |Φk −Ψk|2 , (3.14)

for some c > 0. By (3.13) and (3.14), there is c′ > 0 (independent of h small
enough) such that

|Φk+1 −Ψk+1|2 ≥ (1− hc′) |Φk −Ψk|2 .

Therefore, for every k = 1, ..., N , we get

|Φk+1 −Ψk+1|2 ≥ (1− hc′)k |x− y|2 ≥ (1− hc′)[T/h] |x− y|2 .

and the result follows from the convergence of (1− hc′)[T/h] to exp(−c′T ) as h ↓ 0.

A natural semi-discretization of the solution m[µ] of (2.15), whose representa-
tion formula is given by (2.13), is then obtained as the push-forward of m0 under
the discrete flow Φ0,k[µ](·), i.e. for every k = 0, . . . , N we define

mk[µ] := Φ0,k[µ](·)♯m0. (3.15)

By (3.10) we have

mk[µ] = Φℓ,k[µ](·)♯mℓ[µ] for all ℓ = 1, . . . , k, (3.16)

which is the analogous to (2.14), for the continuous time case. In particular, for all
φ ∈ Cb(R

d) (space of bounded and continuous functions over Rd), we have
∫

Rd

φ(x)dmk+1[µ](x) =

∫

Rd

φ (x− hαk[µ](x)) dmk[µ](x), (3.17)

which applied with φ ≡ 1 gives mk[µ](R
d) = 1 for k = 0, . . . , N .

We have the following Lemma, which improves [10, Lemma 3.7] since we now
prove, using Proposition 3.2, uniform bounds for the density of mk[µ].

Lemma 3.3. There exist c7 > 0 (independent of (µ, h)) such that:

(i) For all k1, k2 ∈ {1, ..., N}, we have that

d1(mk1
[µ],mk2

[µ]) ≤ c7h|k1 − k2| = c7|tk1
− tk2

|. (3.18)

(ii) For all k = 1, ..., N , mk[µ] is absolutely continuous (with density still denoted
by mk[µ]), has a support in B(0, c7) and ‖mk[µ]‖∞ ≤ c7.
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Proof. By Proposition 3.1(iii) we have

|Φ0,k1
[µ](x)− Φ0,k2

[µ](x)| ≤ c5h|k1 − k2| = c5|tk1
− tk2

|. (3.19)

By definition of mk[µ](·), we have that for any 1-Lipschitz function φ : Rd → R

∫

Rd φ(x) d [mk1
[µ]−mk2

[µ]] (x) ≤
∫

Rd |Φ0,k1
[µ](x)− Φ0,k2

[µ](x)|dm0(x)

≤ c5h|k1 − k2| = c5|tk1
− tk2

|.

On the other hand, since by (H1) we have supp(m0) ⊂ B(0, c1), Proposition 3.1(iii)
implies that supp(mk[µ]) is contained in B(0, c1 + 2c5T ). Moreover, for any Borel
set A and k = 1, ..., N , Proposition 3.2 and the fact that ‖m0‖∞ ≤ c1 imply

mk[µ](A) = m0(Υ0,k[µ](A)) ≤ ‖m0‖∞|Υ0,k(A)| ≤
c1
c6

|A|,

where |A| denotes the Lebesgue measure of the set A. Thus, mk[µ] is absolutely
continuous and its density, still denoted by mk[µ], satisfies ‖mk[µ]‖∞ ≤ c1

c6
. The

result follows by taking c7 = max{c5, c1 + 2c5T, c1/c6}.
We now define

mh[µ](t) :=
tk+1 − t

h
mk[µ] +

t− tk
h

mk+1[µ] if t ∈ [tk, tk+1]. (3.20)

The following result is a clear consequence of Lemma 3.3 and (3.20).

Proposition 3.4. There exists constants c8 > 0 (independent of µ and small
enough h) such that:

(i) For all t1, t2 ∈ [0, T ], we have that

d1(mh[µ](t1),mh[µ](t2)) ≤ c8|t1 − t2|. (3.21)

(ii) For all t ∈ [0, T ], mh[µ](t) is absolutely continuous (with density denoted by
mh[µ](·, t)), has a support in B(0, c8) and ‖mh[µ](·, t)‖∞ ≤ c8.

3.3. The semi-discrete scheme for the first order MFG problem (1.2).
For a given N > 0, consider the following semi-discretization of (MFG):

Find m ∈ KN such that mk = Φ0,k[m](·)♯m0 for all k = 0, . . . , N, (MFG)h.

The following result is proved in [10].

Theorem 3.5. Under (H1)-(H3) we have that (MFG)h admits at least one
solution mh ∈ KN . Moreover, if (H4) holds, the solution is unique.

Given any solution mh of (MFG)h, using (3.20) we define an element, still
denoted by mh, in C([0, T ];P1).

Theorem 3.6. Under (H1)-(H3) every limit point of mh in C([0, T ];P1), as
h ↓ 0, solves (MFG). In particular, if (H4) holds we have that mh → m (the unique
solution of (MFG)) in C([0, T ];P1) and in L∞

(

R
d × [0, T ]

)

-weak-∗.
Proof. Proposition 3.4 and Ascoli Theorem imply that mh has at least one limit

point m̄ in C([0, T ];P1) as h ↓ 0. The fact that m̄ solves (MFG) is proved in [10,
Theorem 4.3] using optimal control techniques. Finally, by Proposition 3.4(ii) we
have that mh → m̄ in L∞

(

R
d × [0, T ]

)

-weak-∗. The result follows.
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4. The fully-discrete scheme. Given h, ρ > 0, we consider a d dimensional
lattice Gρ := {xi = iρ, i ∈ Z

d} and a time-space grid Gρ,h := Gρ × {tk}Nk=0, where
tk = kh (k = 0, . . . , N) and tN = Nh = T . We set B(Gρ) and B(Gρ,h) for the space
of bounded functions defined on Gρ and Gρ,h, respectively. Given f ∈ B(Gρ) and
g ∈ B(Gρ,h) we will use the notation

fi := f(xi), gi,k := g(xi, tk) for all i ∈ Z
d and k = 0, . . . , N.

Let us consider the P1 basis {βi ; i ∈ Z
d}, where the function βi : Rd → R is

defined by βi(x) :=
[

1− ‖x−xi‖1

ρ

]

+
:= max{[1− ‖x−xi‖1

ρ , 0}. Denoting by e1, . . . , ed

the canonical base of Rd, it is easy to verify that βi(x) is continuous with compact
support contained in Q(xi) := [xi−ρe1, xi+ρe1]×· · ·×[xi−ρed, xi+ρed], 0 ≤ βi ≤ 1,
βi(xj) = δij (the Kronecker symbol) and

∑

i∈Zd βi(x) = 1. Let us consider the

interpolation operator I[·] : B(Gρ) → Cb(R
d), as

I[f ](·) :=
∑

i∈Zd

fiβi(·). (4.1)

We recall a standard estimate for I (see e.g. [14, 28]). Given φ ∈ Cb(R
d), let us

define φ̂ ∈ B(Gρ) by φ̂i := φ(xi) for all i ∈ Z
d. We have that

sup
x∈Rd

|I[φ̂](x)− φ(x)| = O(ργ), (4.2)

where γ = 1 if φ is Lipschitz and γ = 2 if φ ∈ C2(Rd).

4.1. The fully-discrete scheme for the HJB equation. For a given µ ∈
C([0, T ],P1), we define recursively v ∈ B(Gρ,h) using the following Semi-Lagrangian
scheme for (2.8):

vi,k = Sρ,h[µ](v·,k+1, i, k) k = 0, . . . , N − 1 and vi,N = G(xi, µ(tN )), (4.3)

where Sρ,h[µ] : B(Gρ)× Z
d × {0, . . . , N − 1} → R is defined as

Sρ,h[µ](f, i, k) := inf
α∈Rd

[

I[f ](xi − hα) + 1
2h|α|

2
]

+ hF (xi, µ(tk)). (4.4)

The following properties of Sρ,h[µ] are a straightforward consequence of the defini-
tion and assumptions (H1) and (H2).

Lemma 4.1. The following assertions hold true:

(i) [The scheme is well defined] There exists at least one α ∈ R
d that minimizes the

r.h.s. of (4.4). Moreover, there exists c9 > 0 such that supi∈Zd,k=0,...,N |vi,k| ≤ c9.

(ii)[Monotonicity] For all v, w ∈ B(Gρ) with v ≤ w, we have that

Sρ,h[µ](v, i, k) ≤ Sρ,h[µ](w, i, k) ∀ i ∈ Z
d, k = 0, . . . , N. (4.5)

(iii) For every K ∈ R and w ∈ B(Gρ) we have

Sρ,h[µ](w +K, i, n) = Sρ,h[µ](w, i, n) +K. (4.6)

(iv)[Consistency] Let (ρn, hn) → 0 (as n ↑ ∞) and consider a sequence of grid points
(xin , tkn

) → (x, t) and a sequence µn ∈ C([0, T ];P1) such that µn → µ. Then, for
every φ ∈ C1

(

R
d × [0, T )

)

, we have

limn→∞
1
hn

[

φ(xin , tkn)− Sρn,hn [µn](φkn+1
, in, kn)

]

= −∂tφ(x, t) +
1
2
|Dφ(x, t)(x, t)|2

−F (x, µ(t)).
(4.7)



12

where φk = {φ(xi, tk)}i∈Zd .

We define

vρ,h[µ](x, t) := I[v·,[ t
h ]
](x) for all (x, t) ∈ R

d × [0, T ], (4.8)

where we recall that vi,k is defined by (4.3).
The following notion of weak semiconcavity (see e.g. [23]), will be very useful.

Definition 4.2. Given C, ρ > 0, we say that f : Rd → R is (C, ρ)-weakly
semiconcave if for all x, y ∈ R

d and λ ∈ [0, 1] we have

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y) +
C

2
λ(1− λ)

(

|x− y|2 + ρ2
)

. (4.9)

For the sake of completeness, we recall the following elementary properties of
weak semiconcave whose proofs are easy adaptations of the semiconcave case.

Lemma 4.3. For a continuously differentiable function f : Rd → R the following
assertions are equivalent:

(i) The function f is (C, ρ)-weakly semiconcave.

(ii) For every x, y ∈ R
d

f(x+ y)− 2f(x) + f(x− y) ≤ C(|y|2 + ρ2). (4.10)

(iii) For every x, y ∈ R
d

f(y)− f(x)− 〈Df(x), y − x〉 ≤ C

2

(

|y − x|2 + ρ2
)

. (4.11)

In particular, if f is (C, ρ)-weakly semiconcave then

〈Df(y)−Df(x), y − x〉 ≤ C
(

|y − x|2 + ρ2
)

∀ x, y ∈ R
d. (4.12)

The following result yields the weak semiconcavity of vρ,h[µ].

Lemma 4.4. For every t ∈ [0, T ], the following assertions hold true:

(i) [Lipschitz property] The function vρ,h[µ](·, t) is Lipschitz with constant indepen-
dent of (ρ, h, µ, t).

(ii) [Weak semiconcavity] The function vρ,h[µ](·, t) is (C, ρ)-weakly semiconcave,
with C independent of (ρ, h, µ, t).

Proof. By (H2) we have that ‖DG(·, µ(T ))‖∞ ≤ c0 and so I[G](·, µ(T )) is
c0-Lipschitz. Thus, by the (4.3) and (4.8), we get that vρ,h[µ](·, tN−1) is Lipschitz
with constant hc0 + c0. Iterating the argument, using (H2) for F , we get that
vρ,h[µ](·, t) is c0(1+T ) Lipschitz for all t ∈ [0, T ]. The proof of the second assertion
is provided e.g. in [3, Lemma 4.1].

Theorem 4.5. Let (ρn, hn) → 0 (as n ↑ ∞) be such that
ρ2
n

hn
→ 0. Then, for

every sequence µn ∈ C([0, T ];P1) such that µn → µ in C([0, T ];P1), we have that
vρn,hn

[µn] → v[µ] uniformly over compact sets.
Proof. Using assumption (H1), the proof of this results is a straightforward

variation of the proof in [13], which is a revised proof of the result given in [9].
However, for the sake of completeness we provide the details. For (y, s) ∈ R

d×[0, T ],
set

v∗(y, s) := lim sup
(y′,s′)→(y,s)

n→∞

vρn,hn
[µn](y

′, s′), v∗(y, s) := lim inf
(y′,s′)→(y,s)

n→∞

vρn,hn
[µn](y

′, s′).
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Let us prove that v∗ is a viscosity subsolution of

−∂tv(x, t) + 1
2 |Dv(x, t)|2 = F (x, µ(t)) for (x, t) ∈ R

d × (0, T ),

v(x, T ) = G(x, µ(T )) for x ∈ R
d.

(4.13)

Let (ȳ, s̄) ∈ R
d × (0, T ) and φ ∈ C1(Rd × (0, T )) be such that v∗(ȳ, s̄) = φ(ȳ, s̄) and

v∗−φ has a global strict maximum at (ȳ, s̄). Since v∗(·, ·) is upper semicontinuous,
a standard argument in the theory of viscosity solutions implies that, up to some
subsequence, there exists (yn, sn) → (ȳ, s̄), such that

(vρn,hn [µn]− φ)(yn, sn) = max
(y,s)∈Rd×(0,T )

(vρn,hn [µn]− φ)(y, s)

and (vρn,hn [µn]− φ)(yn, sn) → (v∗ − φ)(ȳ, s̄) = 0.

Thus, for any (y, s) ∈ R
d × [0, T ] we have that

vρn,hn
[µn](y, s) ≤ φ(y, s)+ξn, with ξn := (vρn,hn

[µn]−φ)(yn, sn) → 0. (4.14)

Let k := N → {0, . . . , N − 1} be such that sn ∈ [tk(n), tk(n)+1). Evidently, we have

that tk(n) → s̄. By taking y = xi, i ∈ Z
d, and s = tk(n)+1 in (4.14), we get that

vi,k(n)+1 ≤ φ(xi, tk(n)+1) + ξn for all i ∈ Z
d. (4.15)

Lemma 4.1(ii)-(iii) implies that

Sρn,hn
[µn](v·,k(n)+1, i, k(n)) ≤ Sρn,hn

[µn](φk(n)+1, i, k(n)) + ξn for all i ∈ Z
d.

In particular, using (4.3), we get

vi,k(n) ≤ Sρn,hn
[µn](φk(n)+1, i, k(n)) + ξn for all i ∈ Z

d,

which yields, by the definition of vρn,hn
[µn](yn, sn) in (4.8),

vρn,hn
[µn](yn, sn) ≤

∑

i∈Zd

βi(yn)Sρn,hn
[µn](φk(n)+1, i, k(n)) + ξn.

Now, recalling the definition of ξn, we get

φ(yn, sn) ≤
∑

i∈Zd

βi(yn)Sρn,hn
[µn](φk(n)+1, i, k(n)). (4.16)

We claim now that φ(yn, sn) = φ(yn, tk(n)) + O(h2n). In fact, either sn = tk(n)
(and the claim obviously holds), or sn ∈ (tk(n), tk(n)+1). In the latter case, since
(vρn,hn

− φ)(yn, ·) has a maximum at sn and vρn,hn
is constant in (tk(n), tk(n)+1),

then ∂tφ(yn, sn) = 0 and the claim follows from a Taylor expansion. Thus, by our
claim and (4.16), we have that

φ(yn, tk(n)) ≤
∑

i∈Zd

βi(yn)Sρn,hn
[µn](φk(n)+1, i, k(n)) + o(hn). (4.17)

Now, inequality (4.17), estimate (4.2) and the fact that ρ2n/hn → 0 imply that

lim
n→∞

∑

i∈Zd

βi(yn)
φ(xi, tk(n))− Sρn,hn

[µn](φk(n)+1, i, k(n))

hn
≤ 0.

Finally, by the consistency property in Lemma 4.1(iv) we obtain that

−∂tφ(ȳ, s̄) +
1

2
|Dφ(ȳ, s̄)|2 − F (ȳ, µ(s̄)) ≤ 0,
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which implies that v∗ is a subsolution of (4.14). The supersolution property for v∗
can be proved in a similar manner. Therefore, by a classical comparison argument,
vρn,hn

[µn] converges locally uniformly to v[µ] in R
d × (0, T ).

Note that for all t ∈ [0, T ], the function vρ,h[µ](·, t) is not, in general, differ-
entiable at xi ∈ Gρ. Thus, we cannot use the useful characterizations of weak
semiconcavity (see Lemma 4.3) for differentiable functions. Therefore, we will regu-
larize vρ,h[µ](·, t) with the usual convolution technique. Let ρ ∈ C∞

c (Rd) with ρ ≥ 0
and

∫

Rd ρ(x)dx = 1. For ε > 0, we consider the mollifier ρε(x) := 1
εd
ρ
(

x
ε

)

and
define

vερ,h[µ](·, t) := ρε ∗ vρ,h[µ](·, t) for all t ∈ [0, T ]. (4.18)

Using Lemma 4.4(i) we easily check the estimates

‖vερ,h[µ](·, ·)− vρ,h[µ](·, ·)‖∞ = γε,

‖Dvερ,h[µ](·, ·)‖∞ = γ
ε

(4.19)

where γ > 0 is independent of (ε, ρ, h, µ, t). We have:

Lemma 4.6. For every t ∈ [0, T ], the following assertions hold true:

(i) [Lipschitz property] The function vερ,h[µ](·, t) is Lipschitz with constant d0 inde-
pendent of (ρ, h, µ, t).

(ii) [Weak semiconcavity] The function vερ,h[µ](·, t) is (d1, ρ)-weakly semiconcave,
with d1 independent of (ρ, h, ε, µ, t).

Proof. The result follows directly from the definition of vερ,h[µ](·, t) and the
corresponding results for vρ,h[µ](·, t) in Lemma 4.4.

As a consequence we obtain

Theorem 4.7. Let (ρn, hn, εn) → 0 (as n ↑ ∞) be such that
ρ2
n

hn
→ 0. Then, for

every sequence µn ∈ C([0, T ];P1) such that µn → µ in C([0, T ];P1), we have that
vεnρn,hn

[µn] → v[µ] uniformly over compact sets and Dvεnρn,hn
[µn](x, t) → Dv[µ](x, t)

at every (x, t) such that Dv[µ](x, t) exists.

Proof. The first assertion is a consequence of Theorem 4.5 and the uniform
estimate (4.19). Now, Lemma 4.6 and Lemma 4.3(iii) imply that Dvεnρn,hn

[µn](x, t)
is uniformly bounded in n and

vεnρn,hn
[µn](y, t)− vεnρn,hn

[µn](x, t)− 〈Dvεnρn,hn
[µn](x, t), y− x〉 ≤ 1

2d1
(

|y − x|2 + ρ2n
)

.

Thus, every limit point p of t Dvεnρn,hn
[µn](x, t) satisfies

v[µ](y, t)− v[µ](y, t)− 〈p, y − x〉 ≤ 1
2d1|y − x|2 for all x, y ∈ R

d.

Therefore, ifDv[µ](x, t) exists, the semiconcavity of v[µ] implies that p = Dv[µ](x, t)
from which the result follows.

4.2. The fully-discrete scheme for the continuity equation. Given µ ∈
C([0, T ];P1) and ε > 0 let us define

Φε
i,k,k+1[µ] := xi − hα̂ε

i,k[µ] for all i ∈ Z
d, k = 0, . . . , N − 1, (4.20)

where α̂ε
i,k := α̂ε

ρ,h[µ](xi, tk) and α̂
ε
ρ,h[µ] : R

d × [0, T ] → R
d is defined as

α̂ε
ρ,h[µ](x, t) := Dvερ,h[µ](x, t). (4.21)
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Given the family {Φε
i,k,k+1[µ] ; i ∈ Z

d, k = 0, . . . , N − 1}, we now consider a
fully-discrete scheme for (2.15) which turns out to be equivalent to the one proposed
[26], under some slight change of notation. Let us define

S :=







z = (zi)i∈Zd ; zi ∈ R+ and
∑

i∈Zd

zi = 1







.

The coordinates of m ∈ SN+1 := {ν = (νi)
N
k=0 ; νk ∈ S} are denoted as mi,k, with

i ∈ Z
d and k = 0, ..., N . We set

Ei := [xi ± 1
2ρe1]× ...× [xi ± 1

2ρed] for all i ∈ Z
d,

and define mε[µ] ∈ SN+1 recursively as

mε
i,k+1[µ] :=

∑

j∈Zd βi

(

Φε
j,k,k+1[µ]

)

mε
j,k[µ], for i ∈ Z

d, k = 0, . . . , N − 1,

mε
i,0[µ] :=

∫

Ei
m0(x)dx, for i ∈ Z

d.

(4.22)

Remark 4.1. Note that, omitting the dependence in µ, for k = 0, . . . , N − 1
we have that
∑

i∈Zd

m
ε
i,k+1 =

∑

i∈Zd

∑

j∈Zd

βi

(

Φε
j,k,k+1

)

m
ε
j,k =

∑

j∈Zd

m
ε
j,k

∑

i∈Zd

βi

(

Φε
j,k,k+1

)

=
∑

j∈Zd

m
ε
j,k = 1,

because
∑

j∈Zd mε
j,0 = 1. Therefore, the scheme (4.22) is conservative.

Let us define mε
ρ,h[µ] ∈ L∞(Rd × [0, T ]) as

mε
ρ,h[µ](x, t) := 1

ρd

[

tk+1−t

h

∑

i∈Zd m
ε
i,k[µ]IEi

(x) + t−tk
h

∑

i∈Zd m
ε
i,k+1[µ]IEi

(x)
]

,

if t ∈ [tk, tk+1).
(4.23)

Therefore, for every t ∈ [tk, tk+1) we have

m
ε
ρ,h[µ](x, t) :=

(

tk+1 − t

h

)

m
ε
ρ,h[µ](x, tk) +

(

t− tk

h

)

m
ε
ρ,h[µ](x, tk+1). (4.24)

By abuse of notation, we continue to writemε
ρ,h[µ](t) for the probability measure

in R
d whose density is given by (4.23). Thus, by the very definition, we can identify

mε
ρ,h[µ](·, ·) ∈ L∞(Rd × [0, T ]) with an element mε

ρ,h[µ](·) ∈ C([0, T ];P1).

We now study some technical properties of the family {Φε
i,k,k+1[µ] ; i ∈ Z

d, k =
0, . . . , N − 1}. The next result, which is an easy consequence of the weak semicon-
cavity of vερ,h[µ], is similar to the one proved in Proposition 3.2.

Proposition 4.8. For any i, j ∈ Z
d and k = 0, . . . , N − 1, we have

|Φε
i,k,k+1[µ]− Φε

j,k,k+1[µ]|2 ≥ (1− d2h)|xi − xj |2 − d2hρ
2, (4.25)

where d2 ≥ 0 is independent of (ρ, h, ε, µ).
Proof. For the reader’s convenience, we omit the µ argument. Recalling (4.20)

and (4.21), for every k = 0, . . . , N − 1 we have

|Φε
i,k,k+1 − Φε

j,k,k+1|2 =
∣

∣

∣
xi − xj − h

[

Dvερ,h(xi, tk)−Dvερ,h(xj , tk)
]∣

∣

∣

2

,

= |xi − xj |2 + h2|Dvερ,h(xi, tk)−Dvερ,h(xj , tk)|2+
−2h〈Dvερ,h(xi, tk)−Dvερ,h(xj , tk), xi − xj〉,
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which yields to

|Φε
i,k,k+1 − Φε

j,k,k+1|2 ≥ |xi − xj |2 − 2h〈Dvερ,h(xi, tk)−Dvερ,h(xj , tk), xi − xj〉.

Therefore, by Lemma 4.6(ii) and (4.12) in Lemma 4.3, there exists d2 > 0 such that
(4.25) holds.

Now we provide a technical result which, in the case d = 1, allow us to obtain
uniform L∞ bounds for mε

ρ,h[µ] (see Proposition 4.10(ii) below).

Lemma 4.9. Suppose that d = 1. Then, there exists d3 > 0 (independent of h
small enough and (ρ, ε, µ)) such that for any i ∈ Z and k = 0, . . . , N − 1, we have
that

∑

j∈Z

βi
(

Φε
j,k,k+1

)

≤ 1 + d3h. (4.26)

Proof. For notational simplicity, let us set yj = Φε
j,k,k+1. Note that for any

j1, j2 ∈ Z, Proposition 4.8 implies that

|yj1 − yj2 |
2 ≥ (1− d2h) |xj1 − xj2 |

2 − d2hρ
2.

Thus, if j1 6= j2, we get

|yj1 − yj2 |
2 ≥ (1− 2d2h) ρ

2, i.e. |yj1 − yj2 | ≥
√

(1− 2d2h)ρ. (4.27)

Since the diameter of supp(βi) is equal to 2ρ, the above inequality implies that for
h small enough (independent of (ρ, ε, µ)), the cardinality of

Zi := {j ∈ Z ; yj ∈ supp(βi))}

is at most 3. If Zi only has one element, then (4.26) is trivial. If Zi has two elements
yj1 , yj2 with yj1 < yj2 , then

βi(yj1) + βi(yj2) = 2− |yj1 − xi|
ρ

− |yj2 − xi|
ρ

≤ 2− |yj1 − yj2 |
ρ

,

by the triangular inequality. Using (4.27) we get

βi(yj1) + βi(yj2) ≤ 2−
√

(1− 2d2h) ≤ 1 + 2d2h,

from which (4.27) follows. Finally, if Zi has three elements yj1 , yj2 and yj3 , then
(supposing for example that yj1 ≤ yj2 ≤ xi < yj3) we have

βi(yj1) + βi(yj3) = 1− xi−yj1

ρ + 1− yj3
−xi

ρ ,

= 2− yj2
−yj1

ρ − yj3
−yj2

ρ ≤ 2− 2
√

(1− 2d2h) ≤ 4d2h.

Using that βi(yj2) ≤ 1 and the above estimate, we obtain (4.27) with d3 := 4d2.

Using the above results, we can establish some important properties formε
ρ,h[µ],

which are similar to those found for mh[µ] in the semi-discrete case (see Proposition
3.4).

Proposition 4.10. Suppose that ρ = O(h). Then, there exists a constant
d4 > 0 (independent of (ρ, h, ε, µ)) such that:

(i) For all t1, t2 ∈ [0, T ], we have that

d1(m
ε
ρ,h[µ](t1),m

ε
ρ,h[µ](t2)) ≤ d4|t1 − t2|. (4.28)

(ii) For all t ∈ [0, T ], mε
ρ,h[µ](t) has a support in B(0, d4).
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(iii) If d = 1 then we have

‖mε
ρ,h[µ](·, t)‖∞ ≤ d4.

Proof. Let φ ∈ C(Rd) be a 1-Lipschitz function. By (4.24), the function
ψφ : [0, T ] → R, defined as

ψφ(t) :=

∫

Rd

φ(x)dmε
ρ,h[µ](t),

is affine in each interval [tk, tk+1], with k = 0, . . . , N − 1. It clearly belongs to
W 1,∞([0, T ]) and

∥

∥

∥

∥

d

dt
ψφ

∥

∥

∥

∥

∞

=
1

h
max

k=0,...,N−1

∣

∣

∣

∣

∫

Rd

φ(x)d[mε
ρ,h[µ](tk+1)−mε

ρ,h[µ](tk)]

∣

∣

∣

∣

.

For every k = 0, . . . , N − 1 we have, omitting µ from the notation,
∫

Rd

φ(x)d[mε
ρ,h(tk+1)−mε

ρ,h(tk)] =
1

ρd

∑

i∈Zd

∫

Ei

φ(x)dx





∑

j∈Zd

βi

(

Φε
j,k,k+1

)

mε
j,k −mε

i,k



 ,

=
∑

j∈Zd

mε
j,k





∑

i∈Zd

βi

(

Φε
j,k,k+1

) 1

ρd

∫

Ei

φ(x)dx−
1

ρd

∫

Ej

φ(x)dx



 .

On the other hand, since φ is 1-Lipschitz, we have that
∣

∣

∣

∣

1

ρd

∫

Ei

φ(x)dx− φ(xi)

∣

∣

∣

∣

≤ ρ. (4.29)

Using (4.29), estimate (4.2), Lemma 4.6(i) and the fact that ρ = O(h), we get that
∣

∣

∣

∫

Rd φ(x)d[mε
ρ,h

(tk+1)−mε
ρ,h

(tk)]
∣

∣

∣
≤

∑

j∈Zd

mε
k,j

∣

∣

∣

∣

∣

∑

i∈Zd

βi

(

Φε
j,k,k+1

)

φ(xi)− φ(xj)

∣

∣

∣

∣

∣

+ 2ρ,

=
∑

j∈Zd

mε
k,j

∣

∣

∣
φ
(

Φε
j,k,k+1

)

− φ(xj)
∣

∣

∣
+ 2cρ,

≤ d0h+ 2cρ =
(

d0 + 2cρ
h

)

h ≤ c′h,

for some constants c, c′ > 0 independents of (ρ, h, ε, µ). Therefore, we obtain that
∥

∥

d
dtψφ

∥

∥

∞
≤ c′, which proves (i) with d4 to be chosen later.

In order to prove (ii), it suffices to note that since ‖Dvερ,h[µ]‖∞ ≤ d0 we easily
check that supp(mε

ρ,h[µ](t)) ⊂ B(0, c1 + 2d0T ). Now, let us assume d = 1. By the
definition of mε

ρ,h[µ](·, 0) in (4.23) and assumption (H1), we have

‖mε
ρ,h[µ](·, 0)‖∞ = max

i∈Z

{

1

ρ
mε

i,0[µ]

}

≤ ‖m0‖∞ ≤ c1.

Now, given k = 0, . . . , N − 1, we have that

‖mε
ρ,h[µ](·, tk+1)‖∞ ≤ max

i∈Z

{

1

ρ
mε

i,k+1[µ]

}

=
1

ρ
max
i∈Z







∑

j∈Z

βi
(

Φε
j,k,k+1[µ]

)

mε
j,k[µ]







.

Therefore, by Lemma 4.9, we obtain that

‖mε
ρ,h[µ](·, tk+1)‖∞ ≤ ‖mε

ρ,h[µ](·, tk)‖∞
∑

j∈Z

βi

(

Φε
j,k,k+1[µ]

)

≤ (1 + d3h)‖m
ε
ρ,h[µ](·, tk)‖∞.

Iterating in the above expression, we obtain that

‖mε
ρ,h[µ](·, tk+1)‖∞ ≤ (1 + d3h)

T
h ‖m0‖∞ ≤ ed3T c1,

for h small enough. The result follows, by taking d4 = max{c′, c1 + 2d0T, e
d3T c1}.
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4.3. The fully-discrete scheme for the first order MFG problem (1.2).
For a given ρ, h, ε > 0 and µ ∈ SN+1 we still write µ for the element in C([0, T ];P1)
defined as

µ(x, t) :=
1

ρd





tk+1 − t

h

∑

i∈Zd

µi,kIEi
(x) +

t− tk
h

∑

i∈Zd

µi,k+1IEi
(x)



 if t ∈ [tk, tk+1].

(4.30)
Let us consider the following fully-discretization of (MFG):

Find µ ∈ SN+1 such that µi,k = mε
i,k[µ] ∀ i ∈ Z

d and k = 0, . . . , N, (4.31)

where we recall thatmε
i,k[µ] is defined in (4.22). In order to prove that (4.31) admits

at least a solution, we will need the following stability result.

Lemma 4.11. Let µn ∈ SN+1 be s a sequence converging to µ ∈ SN+1. Then:

(i) vερ,h[µ
n](·, ·) → vερ,h[µ](·, ·) uniformly over compact sets.

(ii) mε
i,k[µ

n] → mε
i,k[µ] for all i ∈ Z

d and k = 0, . . . , N .
Proof. Because of the assumptions on F and G in (H1) we clearly have (i). By

definition of vερ,h[µ
n](x, t) and (i), Lebesgue theorem implies that we have point-

wise convergence of Dvερ,h[µ
n] to Dvερ,h[µ] and obvoiusly also of α̂ρ,h

ε [µn](·, ·) →
α̂ρ,h
ε [µ](·, ·). Assertion (ii) for i ∈ Z

d and k = 1 follows hence from the definition
(4.22) of mε

i,1[µ
n]. Therefore, by recursive argument we get the result for all i ∈ Z

d

and k = 0, . . . , N − 1.

Theorem 4.12. There exists at least one solution of (4.31).
Proof. This is a straightforward consequence of Lemma 4.11, Proposition

4.10(ii) and Brouwer fixed-point theorem.
Given a solution mε ∈ SN+1 of (4.31), we set mε

ρ,h(·, ·) for the extension to

R
d × [0, T ] defined in (4.23).

Now we prove our main result.

Theorem 4.13. Suppose that d = 1 and that (H1)-(H3) hold. Consider
a sequence of positive numbers ρn, hn, εn satisfying that ρn = o (hn), hn = o(εn)
and εn ↓ 0 as n ↑ ∞. Let {mn}n∈N be a sequence of solutions of (4.31) for
the corresponding parameters ρn, hn, εn. Then every limit point in C([0, T ];P1)
of mn (there exists at least one) solves (MFG). In particular, if (H4) holds we
have that mεn

ρn,hn
→ m (the unique solution of (MFG)) in C([0, T ];P1) and in

L∞
(

R
d × [0, T ]

)

-weak-∗.
Proof. For notational convenience we will write vn := vεnρn,hn

[mn]. By Propo-
sition 4.10(i) and Ascoli theorem we can assume the existence of m ∈ C([0, T ];P1)
such that mn (as an element of C([0, T ];P1)) converge to m in C([0, T ];P1). More-
over, Proposition 4.10(iii) implies that, up to some subsequence, mn (as an element
of L∞(Rd × [0, T ])) converge in L∞

(

R
d × [0, T ]

)

-weak-∗ to some m̂. Thus, we nec-
essarily have that m is absolutely continuous and its density, still denoted as m̄,
is equal to m̂. In order to complete the proof, we now show that m solves the
continuity equation (2.3), i.e. for any t ∈ [0, T ] and φ ∈ C∞

c (Rd)

∫

R

φ(x)dm(t)(x) =

∫

R

φ(x)dm0(x)−
∫ t

0

∫

R

Dφ(x)Dv[m](x, s)dm(s)(x)ds. (4.32)

Given t ∈ [0, T ], let us set tn :=
[

t
hn

]

hn. We have

∫

R

φ(x)dmn(tn) =

∫

R

φ(x)dm0(x) +

n−1
∑

k=0

∫

R

φ(x)d [mn(tk+1)−mn(tk)] . (4.33)
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By definitions (4.22) and (4.23), setting Φn
i,k,k+1 := xi − hnDv

n(xi, tk), for all
k = 0, . . . , n− 1 we have

∫

R
φ(x)dmn(tk+1) =

∑

i∈Z
mn

i,k+1
1
ρn

∫

Ei
φ(x)dx,

=
∑

i∈Z

1
ρn

∫

Ei
φ(x)dx

∑

j∈Z
βi

(

Φn
j,k,k+1

)

mn
j,k,

=
∑

j∈Z
mn

j,k

∑

i∈Z
βi

(

Φn
j,k,k+1

)

1
ρn

∫

Ei
φ(x)dx.

(4.34)

As in (4.29) we get

∣

∣

∣

∣

1

ρ

∫

Ei

φ(x)dx− φ(xi)

∣

∣

∣

∣

≤ ‖Dφ‖∞ρ.

Therefore, combining with (4.34), we get (recalling (4.2) with γ = 1)

∫

R
φ(x)dmn(tk+1) =

∑

j∈Z
mn

j,k

∑

i∈Z
βi

(

Φn
j,k,k+1

)

φ(xi) +O(ρ),

=
∑

j∈Z
mn

j,kI[φ]
(

Φn
j,k,k+1

)

+O(ρ),

=
∑

j∈Z
mn

j,kφ
(

Φn
j,k,k+1

)

+O(ρ).

(4.35)

On the other hand, by Lemma 4.4(i), the function vn(·, t) is Lipschitz (with Lipschitz
constant independent of n). Therefore, by (4.19) we have the existence of a constant
c > 0 (independent of n) such that

|Dvn(x, t)−Dvn(y, t)| ≤ c

εn
|x− y|, (4.36)

which implies, setting Φn
k,k+1(x) = x− hnDv

n(x, t), that

∣

∣φ
(

Φn
k,k+1(x)

)

− φ
(

Φn
k,k+1(y)

)
∣

∣ ≤ c′
(

1 +
h

εn

)

|x− y|.

for some c′ > c (which is also independent of n). Therefore, we have

∣

∣

∣

∣

∣

1

ρ

∫

Ej

φ
(

Φn
k,k+1(x)

)

dx− φ
(

Φn
j,k,k+1

)

∣

∣

∣

∣

∣

≤ c′
(

1 +
h

εn

)

ρ.

Since h
εn

= O(1), by (4.35), we get

∫

R
φ(x)dmn(tk+1) =

∑

j∈Z
mn

j,k
1
ρn

∫

Ej
φ
(

Φn
k,k+1(x)

)

dx+O (ρ) ,

=
∫

R
φ
(

Φn
k,k+1(x)

)

dmn(tk) +O (ρ) .

The expression above yields to

∫

R
φ(x)d [mn(tk+1)−mn(tk)] =

∫

R

[

φ
(

Φn
k,k+1(x)

)

− φ(x)
]

dmn(tk) +O (ρ) ,

= −hn
∫

R
Dφ(x)Dvn(x, tk)dm

n(tk)

+O
(

h2n + ρn
)

(4.37)
Since Dφ(·)·Dvn(·, tk) is c′′/εn-Lipschitz (with c′′ large enough), Proposition 4.10(i)
gives that for all s ∈ [tk, tk+1], with k = 0, . . . , n− 1, we have

∣

∣

∣

∣

∫

R

Dφ(x)Dvn(x, tk)d [m
n(s)−mn(tk)]

∣

∣

∣

∣

≤ c′′

εn
|s− tk| ≤

c′′hn
εn

,
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which implies that, using that Dvn(x, s) = Dvn(x, tk) for s ∈ [tk, tk+1[,

∣

∣

∣

∣

∫ tk+1

tk

∫

R

Dφ(x)Dvn(x, s)d [mn(s)−mn(tk)] ds

∣

∣

∣

∣

≤ c′′h2n
εn

. (4.38)

Therefore, combining (4.38) and (4.37), we obtain that

∫

R
φ(x)d [mn(tk+1)−mn(tk)] = −

∫ tk+1

tk

∫

R
Dφ(x)Dvn(x, s)dmn(s)(x)ds

+O
(

h2
n

εn
+ ρn

)

.

Thus, summing from k = 0 to k = n− 1 and using (4.33)

∫

R
φ(x)dmn(tn)(x) =

∫

R
φ(x)mn(x, 0)−

∫ tn
0

∫

R
Dφ(x)Dvn(x, s)mn(x, s)dx ds

+O
(

hn

εn
+ ρn

hn

)

.

(4.39)
By Theorem 4.7 we have that Dvn(x, s) → Dv[m̄](x, s) for a.a. (x, s) ∈ R× [0, T ].
Therefore, using that φ ∈ C∞

c (R), the Lebesgue theorem implies that

I[0,tn]Dφ(·) ·Dvn(·, ·) → I[0,t]Dφ(·) ·Dv[m̄](·, ·) ∈ L1(R× [0, T ]) strongly in L1,

and since mn converge to m̄ in L∞ (R× [0, T ])-weak-∗, we can pass to the limit in
(4.39) to obtain (4.32). The result follows.

5. Numerical Tests. We show numerical simulations for the case d = 1.
Given ε, ρ, h > 0 we set {mε

i,k ; i ∈ Z
d, k = 0, . . . ,

[

T
h

]

} for the solution of

(4.31) and {vεi,k ; i ∈ Z
d, k = 0, . . . ,

[

T
h

]

} for the associate value functions. We
approximate heuristically mε

i,k and vεi,k with a fixed–point iteration method. We

consider as initial guess the element in mε,0 ∈ SN+1 given by

mε,0
i,k = mε

i,0 =

∫

Ei

m0(x)dx, i ∈ Z, k = 0, . . . , N.

Next, for p = 0, 1, 2, . . ., given mε,p ∈ SN+1 we calculate vε,p+1 ∈ B(Gρ,h) with the
backward scheme (4.3), taking as µ the extension of mε,p to C([0, T ];P1) defined
in (4.30). The element mε,p+1 ∈ SN+1 is then computed with the forward scheme
(4.22), taking

ρ(x) =
1√
2π
e−x2/2. (5.1)

In the numerical simulations we approximate (4.21) with a discrete convolution
using a central difference scheme for the gradient. The iteration process is stopped
once the quantities

E(vε,p) := ‖vε,p+1 − vε,p‖∞, E(mε,p) := ‖mε,p+1 −mε,p‖∞, (5.2)

are below a given threshold τ .

Remark 5.1. The theoretical study of the convergence of the fixed–point itera-
tions is not analyzed in the present paper. The analysis of a convergent and efficient
method to solve (4.31) remains as subject of future research.

By Proposition 4.10(ii), we know that mε has a compact support, uniformly
in (ε, ρ, h). Therefore, in order to calculate the iteration mε,p+1

i,k we only need the

values vε,p+1
i,k for i such that iρ belongs to a compact set K, which is independent

of (ε, ρ, h, p). This fact allows us to drop the analysis of boundary conditions.
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For the numerical tests we will consider running costs of the form

1

2
α2(t) + F (x,m(t)) =

1

2
α2(t) + f(x) + V (x,m(t)),

where f is C2 and

V (x,m(t)) = ρσ ∗ [ρσ ∗m(t)] (x), for some σ > 0 to be chosen later. (5.3)

A straightforward calculation shows that F (x,m(t)) = f(x) + V (x,m(t)) satisfies
assumption (H4).

5.1. Test 1. We simulate a game where the agents are adverse to the presence
of other agents during the game and, at the end, they do not want to live at the
boundary of a domain Ω.

In order to model this situation, we take Ω = [−0.2, 1.2], and the running cost

1

2
α2 + F (x,m) =

1

2
α2 + 0.3V (x,m),

where V given by (5.3) with σ = 0.3. We choose T = 1 as final time and

G(x) = −0.5(x+ 0.5)2(1.5− x)2,

as final cost function. We take as initial mass distribution

m0(x) =
ν(x)

∫

Ω
ν(x)dx

where ν(x) = I[0,1](x)(1 − 0.2 cos(πx)). We choose ε = 0.1, as space step ρ =
1.75 · 10−2 and as time step h = 0.02.
The function F penalizes high mass density during the game whereas the final
condition G penalizes the fact that the agents are near the boundary at time T .
In Fig.5.1, we show the mass evolution in the time–space domain Ω × [0, T ]. It is
possible to observe that from the initial configuration, the mass distribution moves
where the final cost is lower and at the same time it does not accumulate completely
at the center.
In Fig. 5.2 the discrete value function vεi,k and in Fig. 5.3 the gradient Dvεi,k are
shown in the domain Ω× [0, T ]. Fig. 5.4 shows the behavior of the errors (5.2) in
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Fig. 5.1. Mass evolution mε
i,k

logarithmic scale on the y-axis with respect to number of fixed–point iterations on
the x-axis. The fixed point iteration method has been stopped when both errors
are below τ = 10−3.
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5.2. Test 2. We model now a game where the agents want to live at x = 0.2
but again they are adverse to the presence of other agents. We consider a space
numerical domain given by Ω = [0, 1] and a final time T = 1. The running cost
function is modeled as

1

2
α2 + F (x,m) =

1

2
α2 + (x− 0.2)2 + V (x,m),

where V (x,m) is defined in (5.3) with σ = 0.05. We do not consider a final cost,
i.e. we take G ≡ 0. We choose as initial mass distribution:

m0(x) =
ν(x)

∫

Ω
ν(x)dx

, with ν(x) = e−(x−0.75)2/(0.1)2 .

We choose ε = 0.2, as space discretization step ρ = 1.25 · 10−2 and as time step
h = 0.02.
Fig. 5.5 shows the mass evolution. As it is expected, during the evolution the

mass distribution tends to concentrate at the “low energy” configuration x = 0.2
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Fig. 5.5. Mass distribution mε
i,k

but at the same time the second term in F penalize this concentration. In Fig.5.6
the discrete value function is shown and in Fig. 5.7 we display its gradient.
In Fig. 5.8, we show the errors E(mε,p) and E(vε,p) of the fixed–point algorithm
for the mass and the value function. The fixed–point iteration has been stopped
when both the errors are below τ = 10−3.
Let us finally compare this test to the case when there is no game, i.e. the running
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Fig. 5.6. Value function vε
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Fig. 5.7. Gradient Dvε
i,k

cost does not depend on m:

F (x,m) = (x− 0.2)2.

In this case, the system is not coupled and after one iteration we obtain the solution.
In Fig. 5.9, the mass evolution is shown. It is seen that, during the evolution,
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the measure maintains its original shape, due to the absence of conflict between
the agents. This shows qualitative differences with the situation where conflict is
present, as was displayed in the case of Fig. 5.5.
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Fig. 5.9. Mass distribution mε
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(case “no game” with F = (x− 0.2)2 )
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