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ABSTRACT: In this short paper, we recall the use of squared slacks used to transform inequality 
constraints into equalities and several reasons why their introduction may be harmful in many 
algorithmic frameworks routinely used in nonlinear programming. Numerical examples performed 
with the sequential quadratic programming method illustrate those reasons. Our results are 
reproducible with state-of-the-art implementations of the methods concerned and mostly serve a 
pedagogical purpose, which we believe will be useful not only to practitioners and students, but also 
to researchers. 
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طي  رمج غير ال ربعا الزائ في ال  تحويل ال

ومينيك أوربا  بول أرمان و 

ع :صمل ا ا يق است قصي  ق ا ائ ي في ه ا ق يتح ا ا  ى مع قي إ اجح ا ت  ا
 ، ك اأس ضيح ت ت  . طي مج غي ا ا في ا ت مي ا ا ي م ا ع ي في ا تح ا ا أس ع  ه

ست ئج  ت ى  حص ع . م ا ا س تس يعي ا ت مج ا يق ا ا  ست ي  ق أمث ع ج في ه ا ا أ
سي أس  ش أس تي ت  ا ع  ض ا ا ق  تع يث ا ح ط ا يا ي يقي تع تط يس  ي  ئج م ت ك ا عتق أ ت ، إ 

. حثي أي ا   ، طا فحس  ا

1. Introduction 

C 
onsider the nonlinear inequality constrained optimization problem

 

   minimize subject to 0 ,
nx R

f x c x


                                                  (1) 

where f and c are 2C functions from nR into R. To simplify, we assume that there is a single inequality 
constraint, but our arguments still hold in the general case. A simple technique to convert the inequality 
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constraint into an equality constraint is to add a new variable y R that appears squared in the reformulation  

    2

,
minimize subject to 0 ,

nx R y R
f x c x y

 
                                               (2) 

hence the name, squared slack. The two problems are equivalent in the sense that *x solves (1) if and only if 
* *( , ( ))x c x   solves (2). This transformation can be used to derive optimality conditions of an inequality 

constrained problem, (see for example (Bertsekas, 1999, §3.3.2) and an interesting discussion on this subject in 
(Nash, 1998)). The use of squared slacks has also been advocated for algorithmic purposes (see for example 
(Tapia, 1980)). In (Gill et al., 1981, §7.4), the authors give theoretical reasons why converting (1) into (2) may 
be a bad idea, but the literature does not appear to state the numerical drawbacks of the approach clearly. 

The purpose of this note is to demonstrate why many algorithmic frameworks of nonlinear programming 
will fail on problems of the form (2), arising from a squared slack transformation or in their own right. Among 
other reasons, we wish to communicate this fact to potential practitioners, who are not necessarily aware of the 
arcane corners of optimization methods. We wish to show that such simple, innocuous-looking transformations 
can be disastrous. This note is mainly motivated by the fact that some users, and some researchers, know that the 
usage of squared slacks is discouraged in practice, but the reason why remains unclear. 

The frameworks that are concerned are the sequential quadratic programming (SQP) method, the 
augmented Lagrangian method, and conjugate-gradient-based methods, among others. It is important to realize 
that (2) satisfies the same regularity conditions as (1) and does not defeat the convergence theory of those 
methods, but illustrates cases where things can, and do, go wrong. We show that the main difficulty comes from 
the linearization of the first order conditions and a bad choice of the starting point. 

The rest of the paper is organized as follows. Section 2 presents a parameterized two-dimensional problem 
that illustrates the major shortcomings of SQP-type methods. Section 3 presents numerical experiments with a 
standard implementation of the SQP method to illustrate our point. However, the results are reproducible with 
state-of-the-art implementations. We elected to not choose a particular existing solver for two main reasons. The 
first is to ensure that we are running the plain SQP method, with no bells and whistles often found in state-of-
the-art software. The second is that the central point of this paper concerns algorithms, not particular 
implementations. We leave to the interested reader the possibility to make his or her own opinion by reproducing 
the numerical tests performed in this paper with his or her favorite implementation of the SQP method. Finally, 
Section 4 describes other well-known families of algorithms subject to similar shortcomings. Conclusions are 
discussed in Section 5. 

We believe that the examples given in this note can serve as pedagogical tools to expose the somewhat 
surprising behavior of some minimization methods for the solution of nonlinear problems. Hopefully, they will 
also be useful to design better methods that do not suffer the same shortcomings. 

2. Shortcomings of some current methods 

In this section, we present a few example problems on which several of the most widely used nonlinear 
optimization algorithms are bound to fail. The reason for this failure is that the problems, without being complex 
or artificial, cause a certain behaviour of the algorithm which corresponds precisely to a case that is usually 
'ruled out' of the theory by means of assumptions. By way of example, we cite Boggs and Tolle (1995), where 
the authors mention various types of solution that an SQP algorithm can produce and that do not correspond to a 
local constrained minimizer of (1). Those cases are when the iterates 
    1.   are unbounded (in violation of Assumption C1 in (Boggs and Tolle, 1995)),  
    2.   have a limit point that is a critical point of (1) but not a local minimizer, or 

    3.   have a limit point that is a critical point of the measure of infeasibility 2( , ) | ( ) | .x y c x y   

We will use the following simple parametrized example to expose those problematic cases. It is based on 
the addition of squared slacks to convert an inequality constraint into an equality. 
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Example 1  Consider the problem  
2 2

,

1
minimize subject to 0 ,

2
x

x y R
x ax e y                                                 (3) 

where a R is a parameter. Various values of a will illustrate each of the three shortcomings listed above.  
  

 
Figure 1. Illustration of problem (3) with = 0a . The two solutions, (0, 1) are indicated by black circles, and 

correspond to global minimizers. Starting from 0( ,0),x  we observe kx   and 0ky   for all k. A typical 

SQP method will stop and claim to have found an optimal solution, with the help of a (very) large multiplier.  
 

 
Figure 2. Illustration of problem (3) with 0a  . The (global) minimizers are (0, 1),  indicated by black circles. 

The point indicated by a red square is a local maximizer. Starting from 0( ,0),x  an SQP method will converge to 

the local maximizer.  
 

Figures 1, 2 and 3 show the various situations graphically. Note that for all ,a R  Example 1 satisfies the 
linear independence constraint qualification at all feasible points. One of its features is that the inequality 
constraint is not active at the minimum of each inequality constrained problem. 
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Figure 3. Illustration of problem (3) with 0a  . The (global) minimizers are (0, 1),  indicated by black circles. 

The point indicated by a red square is a critical point of the infeasibility measure. Using a starting point of the 
form 0( ,0),x  an SQP method will converge towards the red square.  

 
For the purpose of reference, note that the first-order optimality conditions of (1) are given by         0 and , 0 .

f x z c x
z c x

z c x

                                                     (4) 

The main reason for the failure on Example 1 is the following. Assume that Problem (1) is regular in the sense 

that *( ) 0c x   at any critical point * .x  Problem (2) is then regular as well and the Karush-Kuhn-Tucker 

conditions are necessary for first-order optimality. The Lagrangian for problem (2) is  

      2, , ,L x y f x c x y     

where   is the Lagrange multiplier associated to the equality constraint, and at a first-order critical point, we 
must have  

   
  2

= 0 .

f x c x

y

c x y




        
                                                             (5) 

Note that in (5), the complementarity condition of (4) is only apparent as the equality = 0,y  so that the sign 

restrictions on the multiplier and on the constraints in the second part of (4) do not appear. As it turns out, the 
sign of the multiplier can be recovered from the second-order optimality conditions (see (Bertsekas, 1999, 
§3.3.2)). This pseudo-complementarity condition and the loss of sign restriction creates a difficulty in 
linearization-based methods. Indeed, any method that linearizes conditions (5) at a point ( , , )x y   will compute 

a step = ( , , )x yd d d d  satisfying  

0 .yd yd y                                                                     (6) 

Assume at some stage in the process we have = 0y  and 0.   The linearization (6) then necessarily implies 

that = 0.yd  Thus, if ever = 0y  it will always remain equal to zero at subsequent iterations. Of course, if (1) is 

such that the constraint is inactive at * ,x  any method based on a linearization of (5) is bound to fail. Such is the 
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case with the examples of this section. A typical class of methods computing the step according to (6) is the class 
of SQP methods. 

3. Numerical experiments 

In order to eliminate side effects sometimes found in sophisticated implementations, we implemented a 
basic SQP method for equality-constrained problems, as given in (Nocedal and Wright, 1999, Algorithm 18.3), 
for example. The method is globalized with a backtracking linesearch on the 1L -penalty merit function  

 2( , ) ( ) | ( ) | ,x y f x c x y   

where > 0  is a penalty parameter, and the Lagrange multipliers are updated using the least-squares estimates. 
In all cases, the starting point is chosen as (0,0) with the initial multiplier set to 1 2. In the following tables, k is 

the iteration number, ( , )k kx y  is the current iterate, k  is the current Lagrange multiplier estimate, kL  is the 

gradient of the Lagrangian evaluated at ( , , )k k kx y   and k is the steplength computed from the backtracking 

linesearch. 
 

Table 1. Iterations of the SQP method on problem (2) with = 0a    
 

k  kL          | ( , ) |k kc x y  1k   kx  ky  k  

0   5.00e01   1.00e 00       0.00e 00   0.00e 00     5.00e01  
1   0.00e 00   6.92e01   3.68e01   3.68e01   0.00e 00   5.32e01  
2   0.00e 00   2.55e01   1.00e 00   1.37e 00   0.00e 00   5.37e 00  
3   0.00e 00   9.36e02   1.00e 00   2.37e 00   0.00e 00   2.53e 01  
4   0.00e 00   3.45e02   1.00e 00   3.37e 00   0.00e 00   9.78e 01  
5   0.00e 00   1.27e02   1.00e 00   4.37e 00   0.00e 00   3.45e 02  
6   0.00e 00   4.66e03   1.00e 00   5.37e 00   0.00e 00   1.15e 03  
7   0.00e 00   1.72e03   1.00e 00   6.37e 00   0.00e 00   3.71e 03  
8   8.88e16   6.31e04   1.00e 00   7.37e 00   0.00e 00   1.17e 04  
9   0.00e 00   2.32e04   1.00e 00   8.37e 00   0.00e 00   3.60e 04  
10   0.00e 00   8.54e05   1.00e 00   9.37e 00   0.00e 00   1.10e 05  
11   0.00e 00   3.14e05   1.00e 00   1.04e 01   0.00e 00   3.30e 05  
12   0.00e 00   1.16e05   1.00e 00   1.14e 01   0.00e 00   9.84e 05  
13   1.78e15   4.25e06   1.00e 00   1.24e 01   0.00e 00   2.91e 06  
14   1.78e15   1.56e06   1.00e 00   1.34e 01   0.00e 00   8.55e 06  
15   1.78e15   5.75e07   1.00e 00   1.44e 01   0.00e 00   2.50e 07  
16   0.00e 00   2.12e07   1.00e 00   1.54e 01   0.00e 00   7.26e 07  
17   0.00e 00   7.79e08   1.00e 00   1.64e 01   0.00e 00   2.10e 08  
18   0.00e 00   2.86e08   1.00e 00   1.74e 01   0.00e 00   6.06e 08  
19   0.00e 00   1.05e08   1.00e 00   1.84e 01   0.00e 00   1.74e 09  
20   0.00e 00   3.88e09   1.00e 00   1.94e 01   0.00e 00   5.00e 09  

 
Table 1 gives the detail of the iterations in the case where = 0.a  As expected, we see that = 0ky  for all 

k. Because the least-squares estimates happen to yield the exact multipliers in the present case, the gradient of 
the Lagrangian always vanishes. In order to satisfy the first-order optimality conditions, there thus only remains 
attaining feasibility, which is achieved by having kx converge to .  Note also that | |k converges to .  

This behaviour is that of the first shortcoming of Section 2. Some backtracking linesearch iterations were only 
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necessary at the first iteration, the unit step was always accepted at the other iterations. Note that the fact that 

kx  'escapes' to   can be observed in practice by tightening the stopping tolerance. 

Table 2 gives the detail of the iterations in the case where = 1.a   The results are representative of any 

value < 0.a  Here, kx converges to a value which is a local maximizer. This illustrates the second shortcoming 

of Section 2. Again, no backtracking was necessary on this problem, except at the first iteration. 
 

Table 2. Iterations of the SQP method on problem (2) with = 1a     
  

k  kL  | ( , ) |k kc x y  1k   kx  ky  k  

0  1.00e 00   1.00e 00       0.00e 00   0.00e 00     5.00e01  
1  2.78e17   5.68e01   4.56e01   2.28e01   0.00e 00   1.27e01  
2  0.00e 00   3.59e02   1.00e 00   5.44e01   0.00e 00   3.44e01  
3  0.00e 00   1.49e04   1.00e 00   5.67e01   0.00e 00   3.62e01  
4  0.00e 00   2.56e09   1.00e 00   5.67e01   0.00e 00   3.62e01  

 
Table 3. Iterations of the SQP method on problem (2) with = 2a    

  

k  kL  | ( , ) |k kc x y  1k   kx  ky  k  

0    5.00e01   1.00e 00     0.00e 00   0.00e 00     5.00e01  
1   0.00e 00   7.55e01   2.93e01   2.93e01   0.00e 00   4.43e01  
2   0.00e 00   6.39e01   2.06e01   5.29e01   0.00e 00   1.74e 00  
3   0.00e 00   6.16e01   1.00e01   7.39e01   0.00e 00   7.82e 00  
4   0.00e 00   6.15e01   1.26e02   6.57e01   0.00e 00   9.23e 00  
5   1.11e16   6.14e01   4.12e03   6.92e01   0.00e 00   5.18e 02  
6   0.00e 00   6.14e01   1.46e06   6.93e01   0.00e 00   4.33e 05  
7   0.00e 00   6.14e01   2.09e12   6.93e01   0.00e 00   7.55e 10  
8   0.00e 00   6.14e01   1.00e19   6.93e01   0.00e 00   5.19e 07  

 
Finally, Table 3 gives the detail of the iterations in the case where = 2,a  but again, the results are 

representative of any value (0, ).a e  This situation is that given in the third shortcoming of Section 2. 

Backtracking was used in this case and the algorithm stopped claiming that the steplength was too small. 
As a side note, we remark that when = ,a e  there is a unique feasible point for (2) that has = 0.y  The SQP 

algorithm converges towards that point, which is in fact a saddle point. For > ,a e  the feasible set is made of two 
disconnected curves. Each one intersects the axis = 0.y  One of those intersection points is a local maximizer 

while the other one is a local minimizer, but neither of them has = 0.x  Depending on the value of the starting 
point, the SQP algorithm converges to one or the other. We decided to not report those results here since they do 
not add new elements to the present analysis. 

Finally, the above numerical results hold not only for an initial 0 = 0y  but of course, also for 0y  

sufficiently close to 0. This is an effect of finite precision however, and not a shortcoming of the SQP method. 

4. Other algorithmic frameworks 

As we showed in (6), any traditional SQP-type method will necessarily generate iterates of the form 
( ,0)kx  when started from 0( ,0)x  with a nonzero Lagrange multiplier. In this section, we show that similar 

conclusions hold for a variety of families of algorithms for nonlinear programming. 
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Augmented-Lagrangian-based methods fail for a reason similar to that given in Section 2. Note that the 
squared slacks transformation can again be used to derive the proper form of the augmented Lagrangian for 
inequality-constrained problems (Bertsekas, 1996, §3.1-3.2; Bertsekas, 1999, §4.2). Minimization of the 
augmented Lagrangian with squared slacks with respect to the slacks only yields the usual form for inequality-
constrained problems. As we illustrate below, the direct application of the augmented Lagrangian algorithm to 
the formulation involving the slacks suffers the same pitfalls as the SQP method. 

Consider the augmented Lagrangian for (2) 

         22 21
, , ; ,

2
L x y f x c x y c x y                                                (7) 

where > 0  is a penalty parameter and where   is the current estimate of the Lagrange multiplier. The step is 

computed from the Newton equations for (7), where 

        ,
, , ;

2 ,

f x x y c x
L x y

y x y

  
                                                           (8) 

and  

             
   

2 2
2

2

, 2
, , ; ,

2 2 , 4

T

T

f x x y c x c x c x y c x
L x y

y c x x y y

      
             

 

where 2( , ) = ( ( ) )x y c x y    . In particular, the Newton equations yield  

 2( ) ( ( , ) 2 ) = ( , )x yy c x d x y y d y x y        

where xd and yd are the search directions in x and y respectively. Whenever = 0y , the latter equation 

becomes  
  ( ) = 0 ,yc x d   

so that = 0yd  provided that ( ) 0,c x    or equivalently, provided that ( ,0) 0.x   Note, in the second 

component of (8), a 'complementarity' expression similar to that in the second component of (5). 
The iterative minimization of (7) using the truncated conjugate gradient also preserves = 0.y  Indeed, 

when started from 0( ,0),x  the first search direction 0p  is the steepest descent direction and has the form 

0( ,0)  for some 0 .R   The initial residual 0 0=r p  thus will have the same form and so will the next iterate 

1 1 0 0 0( , ) = ( ,0)x y x    and the residual 1.r  A property of the conjugate gradient method is that at the k-th 

iteration, the search direction 1span{ , }k k kp p r  (Golub and Loan, 1996, Corollary 10.2.4). Therefore 1p  

necessarily shares the same form 1( ,0).  A recursion argument thus shows that the k-th conjugate-gradient 

iterate has the form ( ,0).k  This method will therefore also be unable to depart from the hyperplane = 0.y  

5. Discussion 

When the constraint of (1) is inactive, the optimal multiplier is = 0.  However, in (2) we will frequently 

observe | |   when starting with 0 = 0y  to reach dual feasibility. Looking for instance at the results of 

Table 1, the final iterate ( 19.4,0)  is feasible to within the prescribed tolerance. To compensate in dual 

feasibility, we need to have a large multiplier. In this sense, the addition of squared slacks has created a critical 
point at infinity. 

For lack of a better initial value, implementations often set their variables to zero prior to starting the 
optimization, provided the objective and constraints are well defined at the origin. Modeling languages also often 
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set the variables to zero unless the user specifies otherwise. The difficulties exposed in this paper thus certainly 
occur in practice and illustrate another reason why starting points should not be chosen to be zero. 

Unfortunately, the problem is difficult to avoid. Of course, it seems that we should not add squared slacks 
to convert inequality constraints into equality constraints. However problems having the form (2) where the 
variable y does not appear in the objective may arise in their own right. If at all feasible, it is recommended that 

equality constraints involving squared slack variables be converted to inequality constraints. 
It is worth noting that any problem of the form       

,
minimize subject to 0 ,

x y
f x c x g y   

where (0) = 0,g  (0) = 0g   and (0) 0g    will exhibit a similar behavior. For instance, the functions 

( ) = cosh( ),g y y  and ( ) = arctan( )g y y dy have the desired properties. The objective may also have the form 

( , )f x y  and the same conclusions hold if ( ,0) / = 0.f x y   
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