Star-shaped triphenylamine-based molecular glass for solid state dye sensitized solar cell application

Abstract : The synthesis by Suzuki cross-coupling and properties of a glass-forming star-shaped compound tris(9-(3-methylphenyl)carbazol-3-yl)-triphenylamine are reported. The thermal, optical, photoelectrical and electrochemical properties of the hole-transporting compound were studied by differencial scanning calorimetry, thermogravimetric analysis, UV/vis spectroscopy, electron photoemission, time-of-flight technique and cyclic voltammetry. The compound exhibits high thermal stability with a the temperature of the onset of the thermal degradation of 510 °C. The compound absorbs in 200-400 nm range and possesses an optical band gap of 3.15 eV, avoiding any screening effect with the dye. The solid state ionization potential (IPss) of the molecule, measured by electron photoemission and cyclic voltammetry is around 5 eV similar to the standard spiroOMeTAD hole-transporting material. The hole drift mobility in the amorphous layer of reported compound reach 6.4 × 10−5 cm2/Vs under high electrical field (6.4 × 105 V/cm). This synthesized derivative was finally assessed as hole transporting material in the solid state dye-senstized solar cells with (5-(1,2,3,3a,4,8b-hexahydro-4-[4-(2,2-diphenylvinyl)phenyl]-cyclopeanta[b]indole-7-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl)acetic acid (D102) as sensitizer and showed a power conversion efficiency of 0.63% under standard solar irradiation (100 mW/cm2, AM1.5)
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-unilim.archives-ouvertes.fr/hal-01073772
Contributeur : Johann Bouclé <>
Soumis le : vendredi 10 octobre 2014 - 13:47:11
Dernière modification le : lundi 11 mars 2019 - 12:50:02

Identifiants

Collections

Citation

R. Lygaitis, Bruno Schmaltz, R. Degutyte, J.V. Grazulevicius, Martial Degbia, et al.. Star-shaped triphenylamine-based molecular glass for solid state dye sensitized solar cell application. Synthetic Metals, Elsevier, 2014, 195, pp.328-334. ⟨10.1016/j.synthmet.2014.06.024⟩. ⟨hal-01073772⟩

Partager

Métriques

Consultations de la notice

159