Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Computational imaging using a mode-mixing cavity at microwave frequencies

Abstract : We present a 3D computational imaging system based on a mode-mixing cavity at microwave frequencies. The core component of this system is an electrically large rectangular cavity with one corner re-shaped to catalyze mode mixing, often called a Sinai Billiard. The front side of the cavity is perforated with a grid of periodic apertures that sample the cavity modes and project them into the imaging scene. The radiated fields are scattered by the scene and are measured by low gain probe antennas. The complex radiation patterns generated by the cavity thus encode the scene information onto a set of frequency modes. Assuming the first Born approximation for scattering dynamics, the received signal is processed using computational methods to reconstruct a 3D image of the scene with resolution determined by the diffraction limit. The proposed mode-mixing cavity is simple to fabricate, exhibits low losses, and can generate highly diverse measurement modes. The imaging system demonstrated in this letter can find application in security screening and medical diagnostic imaging.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-unilim.archives-ouvertes.fr/hal-01213865
Contributeur : Thomas Fromenteze <>
Soumis le : lundi 12 octobre 2015 - 11:14:51
Dernière modification le : mercredi 22 janvier 2020 - 18:44:02

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Thomas Fromenteze, Okan Yurduseven, Mohammadreza Imani, Jonah Gollub, Cyril Decroze, et al.. Computational imaging using a mode-mixing cavity at microwave frequencies. Applied Physics Letters, American Institute of Physics, 2015, ⟨10.1063/1.4921081⟩. ⟨hal-01213865⟩

Partager

Métriques

Consultations de la notice

371