P. Gao, M. Grätzel, and M. K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy & Environmental Science, vol.136, issue.61, pp.2448-2463, 2014.
DOI : 10.1002/adfm.201304022

A. M. Green, A. J. Ho-baillie, and H. Snaith, The emergence of perovskite solar cells, Nature Photonics, vol.528, issue.7, pp.506-514, 2014.
DOI : 10.1021/jp036039i

J. Even, L. Pedesseau, C. Katan, M. Kepenekian, J. S. Lauret et al., Solid-State Physics Perspective on Hybrid Perovskite Semiconductors, The Journal of Physical Chemistry C, vol.119, issue.19, pp.10161-10177, 2015.
DOI : 10.1021/acs.jpcc.5b00695

URL : https://hal.archives-ouvertes.fr/hal-01138487

C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites, Advanced Materials, vol.51, issue.10, pp.1584-1589, 2013.
DOI : 10.1002/adma.201305172

A. G. Chynoweth, Surface Space-Charge Layers in Barium Titanate, Physical Review, vol.102, issue.3, pp.705-714
DOI : 10.1103/PhysRev.102.705

A. J. Ho-baillie, H. Snaith, L. Pedesseau, C. Katan, M. Kepenekian et al., The emergence of perovskite solar cells [CrossRef] 3. Even Solid-State Physics Perspective on Hybrid Perovskite High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites Surface Space-Charge Layers in Barium Titanate, References 1. Gao Organohalide lead perovskites for photovoltaic applications Miyasaka, T. Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds Proceedings of the 212th ECS Meeting, pp.2448-2463, 2007.

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, vol.131, issue.17, pp.6050-6051, 2009.
DOI : 10.1021/ja809598r

H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Snaith, H.J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, pp.643-647, 2012.
DOI : 10.1038/srep00591

H. Zhou and Q. Chen, Interface engineering of highly efficient perovskite solar cells, Science, vol.345, issue.6196, pp.542-546
DOI : 10.1126/science.1254050

T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale et al., Perovskite-based solar cells: impact of morphology and device architecture on device performance, J. Mater. Chem. A, vol.26, issue.17, pp.8943-8969, 2014.
DOI : 10.1039/c4ta05149a

S. Völker and J. L. Delgado, Organic Charge Carriers for Perovskite Solar Cells, ChemSusChem, vol.137, issue.18, pp.3012-3028, 2015.
DOI : 10.1002/cssc.201500742

Z. Yu and L. Sun, Recent Progress on Hole-Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells, Advanced Energy Materials, vol.5, issue.12, 2015.
DOI : 10.1002/aenm.201401720

. Perovskite, Fullerene Planar-Heterojunction Hybrid Solar Cells, Adv. Mater, vol.25, pp.3727-3732, 2013.

S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci., vol.102, issue.1, pp.399-407, 2013.
DOI : 10.1002/adfm.201302090

O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel et al., Perovskite solar cells employing organic charge-transport layers, Nature Photonics, vol.40, issue.2, pp.128-132, 2013.
DOI : 10.1038/nphoton.2013.341

P. Docampo, J. M. Ball, G. E. Eperon, and H. J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates, Nature Communications, vol.6, p.2013
DOI : 10.1038/nature12557

J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, 1% hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hybrid solar cells, Energy Environ. Sci, vol.18, issue.8, pp.1602-1608, 2015.

A. D. Sheikh, A. Bera, M. A. Hague, R. B. Rakhi, S. D. Gobbo et al., Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells, Solar Energy Materials and Solar Cells, vol.137, pp.6-14, 2015.
DOI : 10.1016/j.solmat.2015.01.023

M. Antoniadou, E. Siranidi, N. Vaenas, A. G. Kontos, E. Stathatos et al., Photovoltaic Performance and Stability of CH 3 NH 3 PbI 3´x Cl x Perovskites, J. Surf. Interface Mater, vol.2, pp.1-5, 2014.

M. Franckevicius, A. Mishra, F. Kreuzer, J. Luo, S. M. Zakeeruddin et al., A dopant-free spirobi[cyclopenta[2,1-b:3,4-b???]dithiophene] based hole-transport material for efficient perovskite solar cells, Mater. Horiz., vol.90, issue.6, pp.613-618
DOI : 10.1039/C5MH00154D

L. Cabau, I. Garcia-benito, A. Molina-ontoria, N. F. Montcada, and N. Martin, Vidal-Ferran, A.; Palomares, E. Diarylamino-substituted Tetraarylethene (TAE) as Efficient and Robust Hole Transport Material for 11% Methyl Ammonium Lead Iodide Perovskite Solar Cells, Chem. Commun, vol.51, pp.2015-13980

H. Choi, K. Do, S. Park, J. S. Yu, and J. Ko, -Di(4-methoxyphenyl)aminophenyl Arms on an Ethene Unit for Perovskite Solar Cells, Chemistry - A European Journal, vol.70, issue.45, pp.15919-12923, 2015.
DOI : 10.1002/chem.201502741

URL : https://hal.archives-ouvertes.fr/hal-00857436

H. Choi, S. Park, M. S. Kang, and J. Ko, Efficient, symmetric oligomer hole transporting materials with different cores for high performance perovskite solar cells, Chem. Commun., vol.16, issue.85, pp.15506-15509, 2015.
DOI : 10.1039/C5CC05814G

W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu et al., High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials, Nano Energy, vol.16, pp.428-437, 2015.
DOI : 10.1016/j.nanoen.2015.07.024

P. Gratia, A. Magomedov, T. Malinauskas, M. Daskeviciene, A. Abate et al., A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells, Angewandte Chemie International Edition, vol.6, issue.39, pp.11409-11413, 2015.
DOI : 10.1002/anie.201504666

I. Lim, E. K. Kim, S. A. Patil, D. Y. Ahn, W. Lee et al., Indolocarbazole based small molecules: an efficient hole transporting material for perovskite solar cells, RSC Adv., vol.267, issue.68, pp.55321-55327, 2015.
DOI : 10.1039/C5RA10148D

. Appl and . Mater, Interfaces 2015, pp.22213-22217

M. Planells, A. Abate, D. J. Hollman, S. D. Stranks, V. Bharti et al., Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells, Journal of Materials Chemistry A, vol.20, issue.41, pp.6949-6960, 2013.
DOI : 10.1002/aenm.201300057

A. Abate, M. Planells, D. J. Hollman, V. Barthi, S. Chand et al., ] perovskite solar cells, Phys. Chem. Chem. Phys., vol.135, issue.4, pp.2335-2338, 2014.
DOI : 10.1039/C4CP04685D

A. R. Murphy and J. M. Fréchet, Organic Semiconducting Oligomers for Use in Thin Film Transistors, Chemical Reviews, vol.107, issue.4, pp.1066-1096, 2007.
DOI : 10.1021/cr0501386

Y. Sun, Y. Liu, and D. Zhu, Advances in organic field-effect transistors, Journal of Materials Chemistry, vol.15, issue.1, pp.53-65, 2004.
DOI : 10.1039/b411245h

J. Zaumseil and H. Sirringhaus, Electron and Ambipolar Transport in Organic Field-Effect Transistors, Chemical Reviews, vol.107, issue.4, pp.1296-1323, 2007.
DOI : 10.1021/cr0501543

C. V. Kumar, G. Sfyri, D. Raptis, E. Stathatos, and P. Lianos, Perovskite solar cell with low cost Cu-phthalocyanine as hole transporting material, RSC Adv., vol.118, issue.4, pp.3786-3791
DOI : 10.1039/C4RA14321C

O. Malinkiewicz, C. Roldán-carmona, A. Soriano, E. Bandiello, L. Camacho et al., Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers, Advanced Energy Materials, vol.134, issue.15
DOI : 10.1002/aenm.201400345

D. Zhao, M. Sexton, H. Y. Park, G. Baure, J. C. Nino et al., High-Efficiency Solution-Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer, Advanced Energy Materials, vol.8, issue.6
DOI : 10.1002/aenm.201401855

Q. Wang, C. Bi, and J. Huang, Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells, Nano Energy, vol.15, pp.275-280, 2015.
DOI : 10.1016/j.nanoen.2015.04.029

H. Choi, J. Jeong, S. Song, G. C. Bazan, J. Y. Kim et al., Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells, Nature Communications, vol.24, p.2015
DOI : 10.1002/anie.201307667

X. Li, X. Liu, X. Wang, L. Zhao, T. Jiu et al., Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells, J. Mater. Chem. A, vol.336, issue.29, pp.15024-15029, 2015.
DOI : 10.1039/C5TA04712A

A. Abate, S. Paek, F. Giordano, J. P. Correa-baena, M. Saliba et al., Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells, Energy Environ. Sci., vol.150, issue.10, pp.2946-2953, 2015.
DOI : 10.1039/C5EE02014J

S. G. Mhaisalkar, Facile Synthesis of a Furan-Arylamine Hole-Transporting Material for High-Efficiency, Mesoscopic Perovskite Solar Cells, Chem. Eur. J, vol.21, pp.1-6, 2015.

W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, vol.350, issue.6263, pp.944-948, 2015.
DOI : 10.1126/science.aad1015

J. A. Christians, J. S. Manser, and P. Kamat, Best Practices in Perovskite Solar Cell Efficiency Measurements Avoiding the Error of Making Bad Cells Look Good, J. Phys. Chem. Lett. 2015, vol.6, pp.862-867

K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Hörantner et al., as an Efficient n-Type Compact Layer in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, vol.6, issue.12, pp.2399-2405
DOI : 10.1021/acs.jpclett.5b00902

M. F. Lo, Z. Q. Guan, T. W. Ng, C. Y. Chan, and C. S. Lee, Electronic Structures and Photoconversion Mechanism in Perovskite/Fullerene Heterojunctions, Advanced Functional Materials, vol.22, issue.8, 2014.
DOI : 10.1002/adfm.201402692

C. Z. Li, P. W. Liang, D. B. Sulas, P. D. Nguyen, X. Li et al., Modulation of hybrid organic???perovskite photovoltaic performance by controlling the excited dynamics of fullerenes, Mater. Horiz., vol.26, issue.4, pp.414-419
DOI : 10.1039/C5MH00026B

C. Tao, S. Neutzner, L. Collela, S. Marras, A. R. Kandada et al., 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells, Energy Environ. Sci., vol.2, issue.8, pp.2365-2370, 2015.
DOI : 10.1039/C5EE01720C