K. Zhang, D. Yu, Z. Jiang, H. Zhu, L. Geng et al., Zinc oxide nanorod and nanowire for humidity sensor, Applied Surface Science, vol.242, issue.1-2, pp.212-217, 2005.
DOI : 10.1016/j.apsusc.2004.08.013

G. Su and Y. P. Chang, Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO2 nanoparticles composite thin films, Sensors and Actuators B: Chemical, vol.129, issue.2, pp.915-920, 2008.
DOI : 10.1016/j.snb.2007.10.006

A. Kong, T. S. Enders, P. A. Rahman, and . Dowben, Molecular adsorption on graphene, Journal of Physics: Condensed Matter, vol.26, issue.44, p.443001, 2014.
DOI : 10.1088/0953-8984/26/44/443001

H. B. Guo, R. Jiang, Y. L. Shao, S. Zhang, J. N. Xie et al., Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device, Carbon, vol.50, issue.4, pp.1667-1673, 2012.
DOI : 10.1016/j.carbon.2011.12.011

J. Zhang, B. Tong, and . Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly, Sensors and Actuators B: Chemical, vol.197, pp.66-72, 2014.
DOI : 10.1016/j.snb.2014.02.078

S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, vol.80, issue.6, p.1339, 1958.
DOI : 10.1021/ja01539a017

C. Marcano, D. V. Kosynkin, A. Sinitskii, Z. Sun, A. Slesarev et al., Improved Synthesis of Graphene Oxide, ACS Nano, vol.4, issue.8, p.4806, 2010.
DOI : 10.1021/nn1006368

B. Chen, C. Yao, G. Li, and . Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, vol.64, p.225, 2013.
DOI : 10.1016/j.carbon.2013.07.055

Y. Dan, N. J. Lu, Z. Kybert, A. T. Luo, and . Johnson, Intrinsic Response of Graphene Vapor Sensors, Nano Letters, vol.9, issue.4, pp.1472-1475, 2009.
DOI : 10.1021/nl8033637

URL : http://arxiv.org/abs/0811.3091

A. Shim, N. Javey, H. Wong-shi-kam, and . Dai, Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors, Journal of the American Chemical Society, vol.123, issue.46, pp.11512-11513, 2001.
DOI : 10.1021/ja0169670

O. Qi, M. Vermesh, A. Grecu, Q. Javey, H. Wang et al., Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection, Nano Letters, vol.3, issue.3, pp.347-351, 2003.
DOI : 10.1021/nl034010k

J. Chachulski, G. Gebicki, P. Jasinski, A. Jasinski, and . Nowakowski, Properties of a polyethyleneimine-based sensor for measuring medium and high relative humidity, Measurement Science and Technology, vol.17, issue.1, pp.12-16, 2006.
DOI : 10.1088/0957-0233/17/1/003

B. Aziza, Q. Zhang, and D. Baillargeat, Graphene/mica based ammonia gas sensors, Applied Physics Letters, vol.105, issue.25, p.254102, 2014.
DOI : 10.1002/smll.201303929

H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu et al., Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy, ACS Nano, vol.3, issue.3, p.569, 2009.
DOI : 10.1021/nn900130g

URL : http://arxiv.org/abs/0812.4169

M. C. Chen, C. L. Hsu, and T. J. Hsueh, Fabrication of Humidity Sensor Based on Bilayer Graphene, IEEE Electron Device Letters, vol.35, issue.5, pp.590-592, 2014.
DOI : 10.1109/LED.2014.2310741

O. Leenaerts, B. Partoens, and F. M. Peeters, , and NO on graphene: A first-principles study, Physical Review B, vol.77, issue.12, p.125416, 2008.
DOI : 10.1103/PhysRevB.77.125416

X. Lin, J. Ni, and C. Fang, on the pristine graphene, Journal of Applied Physics, vol.113, issue.3, p.34306, 2013.
DOI : 10.1073/pnas.0501030102

T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Adsorbates on graphene: Impurity states and electron scattering, Chemical Physics Letters, vol.476, issue.4-6, p.125, 2009.
DOI : 10.1016/j.cplett.2009.06.005

URL : http://repository.ubn.ru.nl/bitstream/2066/76022/1/76022.pdf

Q. Huang, D. Zeng, S. Tian, and C. Xie, Synthesis of defect graphene and its application for room temperature humidity sensing, Materials Letters, vol.83, pp.76-79, 2012.
DOI : 10.1016/j.matlet.2012.05.074

P. Ziegler, J. Gava, F. G?-uttinger, L. Molitor, M. Wirtz et al., Variations in the work function of doped single- and few-layer graphene assessed by Kelvin probe force microscopy and density functional theory, Physical Review B, vol.83, issue.23, p.235434, 2011.
DOI : 10.1103/PhysRevB.83.235434

URL : https://hal.archives-ouvertes.fr/hal-00639882

D. Baikie, U. Petermann, A. Speakman, B. , K. M. Dirscherl et al., Work function study of rhenium oxidation using an ultra high vacuum scanning Kelvin probe, Journal of Applied Physics, vol.83, issue.333, p.4371, 2000.
DOI : 10.1063/1.1289486

Q. Guo, X. M. Zhao, Y. Bai, and L. J. Qiao, Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ SPM, Applied Surface Science, vol.258, issue.22, pp.9087-9091, 2012.
DOI : 10.1016/j.apsusc.2012.06.003