E. Pickwell and V. P. Wallace, Biomedical applications of terahertz technology, Journal of Physics D: Applied Physics, vol.39, issue.17, pp.301-310, 2006.
DOI : 10.1088/0022-3727/39/17/R01

S. Fan, Y. He, B. S. Ung, and E. Pickwell-macpherson, The growth of biomedical terahertz research, Journal of Physics D: Applied Physics, vol.47, issue.37, p.374009, 2014.
DOI : 10.1088/0022-3727/47/37/374009

J. F. Federici, THz imaging and sensing for security applications???explosives, weapons and drugs, Semiconductor Science and Technology, vol.20, issue.7, pp.266-280, 2005.
DOI : 10.1088/0268-1242/20/7/018

M. Schirmer, Biomedical applications of a real-time terahertz color scanner, Biomedical Optics Express, vol.1, issue.2, pp.354-366, 2010.
DOI : 10.1364/BOE.1.000354.m003

E. P. Parrott and J. A. Zeitler, Terahertz Time-Domain and Low-Frequency Raman Spectroscopy of Organic Materials, Applied Spectroscopy, vol.92, issue.7, pp.1-25, 2015.
DOI : 10.1007/978-3-642-29564-5_14

M. Rahm, J. S. Li, and W. J. Padilla, THz Wave Modulators: A Brief Review on Different Modulation Techniques, Journal of Infrared, Millimeter, and Terahertz Waves, vol.46, issue.22, pp.1-27, 2013.
DOI : 10.1364/AO.46.005034

H. K. Yoo, Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers, Applied Physics Letters, vol.105, issue.1, p.11115, 2014.
DOI : 10.1021/j100154a006

K. S. Lee, All-optical THz wave switching based on CH3NH3PbI3 perovskites, Scientific Reports, vol.90, issue.1, p.37912, 2016.
DOI : 10.1063/1.1376673

M. Yarahmadi, M. K. Moravvej-farshi, and L. Yousefi, Subwavelength Graphene-Based Plasmonic THz Switches and Logic Gates, IEEE Transactions on Terahertz Science and Technology, vol.5, issue.5, pp.725-731, 2015.
DOI : 10.1109/TTHZ.2015.2459674

C. Han, E. P. Parrott, and E. Pickwell-macpherson, Tailoring Metamaterial Microstructures to Realize Broadband Polarization Modulation of Terahertz Waves, IEEE Journal of Selected Topics in Quantum Electronics, vol.23, issue.4, p.4700806, 2017.
DOI : 10.1109/JSTQE.2016.2641581

R. Kcrsling, G. Sifiuscr, and K. Unierrainer, Terahertz phase modulator, Electron. Lett, vol.36, pp.1156-1158, 2000.

H. O. Wijewardane and C. A. Ullrich, Coherent control of intersubband optical bistability in quantum wells, Applied Physics Letters, vol.84, issue.20, pp.3984-3986, 2004.
DOI : 10.1103/PhysRevLett.87.037401

T. Kleine-ostmann, P. Dawson, K. Pierz, and G. H. Koch, Room-temperature operation of an electrically driven terahertz modulator, Applied Physics Letters, vol.84, issue.18, pp.3555-3557, 2004.
DOI : 10.1364/JOSAB.7.002006

I. H. Libon, An optically controllable terahertz filter, Applied Physics Letters, vol.76, issue.20, pp.2821-2823, 2000.
DOI : 10.1063/1.107762

K. F. Mak, L. Ju, F. Wang, and T. Heinz, Optical spectroscopy of graphene: From the far infrared to the ultraviolet, Solid State Communications, vol.152, issue.15, pp.1341-1349, 2012.
DOI : 10.1016/j.ssc.2012.04.064

B. S. Rodriguez, Broadband graphene terahertz modulators enabled by intraband transitions, Nature Communications, vol.3, p.780, 2012.
DOI : 10.1063/1.2776887

B. S. Rodriguez, Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-absorption Modulators, Nano Letters, vol.12, issue.9, pp.4518-4522, 2012.
DOI : 10.1021/nl3016329

N. Kakenov, Graphene-enabled electrically controlled terahertz spatial light modulators, Optics Letters, vol.40, issue.9, pp.1984-1987, 2015.
DOI : 10.1364/OL.40.001984

P. Weis, Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene, ACS Nano, vol.6, issue.10, pp.9118-9124, 2012.
DOI : 10.1021/nn303392s

Z. Huang, E. P. Parrott, H. Park, H. P. Chan, and E. Pickwell-macpherson, High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure, Optics Letters, vol.39, issue.4, pp.793-796, 2014.
DOI : 10.1364/OL.39.000793

C. Han and W. Tam, Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays, Applied Physics Letters, vol.106, issue.8, p.81102, 2015.
DOI : 10.1002/9780470443736

C. Han and W. Tam, Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition, Applied Physics Letters, vol.109, issue.25, p.251102, 2016.
DOI : 10.1364/JOSAB.29.003021

H. T. Chen, Active terahertz metamaterial devices, Nature, vol.88, issue.7119, pp.597-600, 2006.
DOI : 10.1038/nature05343

Y. Bai, K. Chen, T. Bu, and S. Zhuang, An electrically tunable terahertz metamaterial modulator with two independent channels, Journal of Applied Physics, vol.119, issue.12, p.124505, 2016.
DOI : 10.1038/ncomms1787

M. T. Nouman, Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors, Scientific Reports, vol.75, issue.1, p.26452, 2016.
DOI : 10.1103/PhysRevB.75.041102

L. Ju, Graphene plasmonics for tunable terahertz metamaterials, Nature Nanotechnology, vol.324, issue.10, pp.630-634, 2011.
DOI : 10.1126/science.1171245

X. He, Electrically tunable terahertz wave modulator based on complementary metamaterial and grapheme, J. Appl. Phys, vol.115, pp.17-903, 2014.

P. Jepsen, thin film observed with terahertz spectroscopy, Physical Review B, vol.24, issue.20, p.205103, 2006.
DOI : 10.1103/PhysRevB.73.193311

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. Hoffman, Nanoscale imaging and control of resistance switching in VO2 at room temperature, Applied Physics Letters, vol.96, issue.21, p.213106, 2010.
DOI : 10.1016/0022-4596(73)90189-8

A. Crunteanu, -based electrical switches: a lifetime operation analysis, Science and Technology of Advanced Materials, vol.11, issue.6, p.65002, 2010.
DOI : 10.1063/1.2930959

URL : https://hal.archives-ouvertes.fr/hal-01316651

V. Théry, films grown by electron beam evaporation, Journal of Applied Physics, vol.121, issue.5, p.55303, 2017.
DOI : 10.1002/1521-3951(199705)201:1<319::AID-PSSB319>3.0.CO;2-T

F. Yan, E. P. Parrott, B. S. Ung, and E. Pickwell-macpherson, Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices, The Journal of Physical Chemistry C, vol.119, issue.12, pp.6813-6818, 2015.
DOI : 10.1021/acs.jpcc.5b00465

E. P. Parrott, Vanadium dioxide devices for terahertz wave modulation: a study of wire grid structures, Nanotechnology, vol.27, issue.20, p.205206, 2016.
DOI : 10.1088/0957-4484/27/20/205206

URL : https://hal.archives-ouvertes.fr/hal-01302314

J. H. Shin, K. Moon, E. S. Lee, I. M. Lee, and K. H. Park, hybrid grating structure for a terahertz active switchable linear polarizer, Nanotechnology, vol.26, issue.31, p.315203, 2015.
DOI : 10.1088/0957-4484/26/31/315203

J. Ma, G. Xu, L. Miao, M. Tazawa, and S. Tanemura, Thin Films, Japanese Journal of Applied Physics, vol.50, issue.2R, p.20215, 2011.
DOI : 10.7567/JJAP.50.020215

URL : https://hal.archives-ouvertes.fr/hal-00483115

J. Li and J. Dho, films on glass substrate, Applied Physics Letters, vol.99, issue.23, p.231909, 2011.
DOI : 10.1103/PhysRevLett.105.056404

H. Liu, Size effects on metal-insulator phase transition in individual vanadium dioxide nanowires, Optics Express, vol.22, pp.30748-30755, 2014.

A. L. Pergament, P. P. Boriskov, A. A. Velichko, and N. A. Kuldin, Switching effect and the metal???insulator transition in electric field, Journal of Physics and Chemistry of Solids, vol.71, issue.6, pp.874-879, 2010.
DOI : 10.1016/j.jpcs.2010.03.032

S. Lee, Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science, vol.355, issue.6323, pp.371-374, 2017.
DOI : 10.1103/PhysRev.119.1869

A. Crunteanu, Electric field-assisted metal insulator transition in vanadium dioxide (VO 2 ) thin films: optical switching behavior and anomalous far-infrared emissivity variation, Proc. SPIE Oxide-based Materials and Devices VI9364, pp.93640-93641, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01226173