Certification of minimal approximant bases
Giorgi Pascal, Vincent Neiger

To cite this version:

HAL Id: hal-01701861
https://hal-unilim.archives-ouvertes.fr/hal-01701861v2
Submitted on 17 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Certification of Minimal Approximant Bases

Pascal Giorgi
LIRMM, Université de Montpellier, CNRS
Montpellier, France
pascal.giorgi@lirmm.fr

Vincent Neiger
Univ. Limoges, CNRS, XLIM, UMR 7252
F-87000 Limoges, France
vincent.neiger@unilim.fr

ABSTRACT
For a given computational problem, a certificate is a piece of data that one (the prover) attaches to the output with the aim of allowing efficient verification (by the verifier) that this output is correct. Here, we consider the minimal approximant basis problem, for which the fastest known algorithms output a polynomial matrix of dimensions $m \times m$ and average degree D/m using $O(m^{\omega} D/m)$ field operations. We propose a certificate which, for typical instances of the problem, is computed by the prover using $O(m^{\omega+1} D)$ additional field operations and allows verification of the approximant basis by a Monte Carlo algorithm with cost bound $O(m^{\omega} + mD)$.

Besides theoretical interest, our motivation also comes from the fact that approximant bases arise in most of the fastest known algorithms for linear algebra over the univariate polynomials; thus, this work may help in designing certificates for other polynomial matrix computations. Furthermore, cryptographic challenges such as breaking records for discrete logarithm computations or for integer factorization rely in particular on computing minimal approximant bases for large instances: certificates can then be used to provide reliable computation on outsourced and error-prone clusters.

KEYWORDS
Certification; minimal approximant basis; order basis; polynomial matrix; truncated product.

1 INTRODUCTION

Context. For a given tuple $d = (d_1, \ldots, d_n) \in \mathbb{Z}_{\geq 0}^n$ called order, we consider an $m \times n$ matrix F of formal power series with the column j truncated at order d_j. Formally, let $F \in \mathbb{K}[X]^{m \times n}$ be a matrix over the univariate polynomials over a field \mathbb{K}, such that the column j of F has degree less than d_j. Then, we consider the classical notion of minimal approximant bases for F [1, 27]. An approximant is a polynomial row vector $p \in \mathbb{K}[X]^{1 \times m}$ such that

$$pF = 0 \mod X^d,$$

where $X^d = \text{diag}(X^{d_1}, \ldots, X^{d_n})$;

(1)

Here $pF = 0 \mod X^d$ means that $pF = qX^d$ for some $q \in \mathbb{K}[X]^{1 \times n}$.

The set of all approximants forms a (free) $\mathbb{K}[X]$-module of rank m,

$$\mathcal{A}_q(F) = \left\{ p \in \mathbb{K}[X]^{1 \times m} \mid pF = 0 \mod X^d \right\}.$$

A basis of this module is called an approximant basis (or sometimes an order basis or a σ-basis); it is a nonsingular matrix in $\mathbb{K}[X]^{m \times m}$ whose rows are approximants in $\mathcal{A}_q(F)$ and generate $\mathcal{A}_q(F)$.

The design of fast algorithms for computing approximant bases has been studied throughout the last three decades [1, 14, 15, 26–28]. Furthermore, these algorithms compute minimal bases, with respect to some degree measure specified by a shift $s \in \mathbb{Z}^m$. The best known cost bound is $O(m^{\omega+1}D)$ operations in \mathbb{K} [15] where D is the sum $D = |d| = d_1 + \cdots + d_n$. Throughout the paper, our complexity estimates will fit the algebraic RAM model counting only operations in \mathbb{K}, and we will use $O(m^\omega)$ to refer to the complexity of the multiplication of two $m \times m$ matrices, with $\omega < 2.373$ [4, 21].

Here, we are interested in the following question:

How to efficiently certify that some approximant basis algorithm indeed returns an s-minimal basis of $\mathcal{A}_q(F)$?

Since all known fast approximant basis algorithms are deterministic, it might seem that a posteriori certification is pointless. In fact, it is an essential tool in the context of unreliable computations that arise when one delegates the processing to outsourced servers or to some large infrastructure that may be error-prone. In such a situation, and maybe before concluding a commercial contract to which this computing power is attached, one wants to ensure that he will be able to guarantee the correctness of the result of these computations. Of course, to be worthwhile, the verification procedure must be significantly faster than the original computation.

Resorting to such computing power is indeed necessary in the case of large instances of approximant bases, which are a key tool within challenging computations that try to tackle the hardness of some cryptographic protocols, for instance those based on the discrete logarithm problem (e.g. El Gamal) or integer factorization (e.g. RSA). The computation of a discrete logarithm over a 768-bit prime field, presented in [20], required to compute an approximant basis that served as input for a larger computation which took a total time of 355 core years on a 4096-cores cluster. The approximant basis computation itself took 1 core year. In this context, it is of great interest to be able to guarantee the correctness of the approximant basis before launching the most time-consuming step.

Linear algebra operations are good candidates for designing fast verification algorithms since they often have a cost related to matrix multiplication while their input only uses quadratic space. The first example one may think of is linear system solving. Indeed, given a solution vector $x \in \mathbb{K}^n$ to a system $Ax = b$ defined by $A \in \mathbb{K}^{n \times n}$ and $b \in \mathbb{K}^n$, one can directly verify the correctness by checking the equations at a cost of $O(n^2)$ operations in \mathbb{K}. Comparatively, solving the system with the fastest known algorithm costs $O(n^{\omega})$.

Another famous result, due to Freivalds [11], gives a method to verify a matrix product. Given matrices $A, B, C \in \mathbb{K}^{n \times n}$, the idea is to check $uC = (uA)B$ for a random row vector $u \in \{0, 1\}^{1 \times n}$,
rather than $C = AB$. This verification algorithm costs $O(n^3)$ and
is false-biased one-sided Monte-Carlo (it is always correct when it
answers "false"); the probability of error can be made arbitrarily
small by picking several random vectors.

In some cases, one may require an additional piece of data to be
produced together with the output in order to prove the correctness
of the result. For example, Farkas’ lemma [10] certifies the infeasibility
of a linear program thanks to an extra vector. Although the
verification is deterministic in this example, the design of certificates
that are verified by probabilistic algorithms opened a line of
work for faster certification methods in linear algebra [7, 8, 17, 18].

In this context, one of the main challenges is to design optimal
certificates, that is, ones which are verifiable in linear time. Furthermore,
the time and space needed for the certificate must remain negligible.
In this work, we seek such an optimal certificate for the
problem of computing shifted minimal approximant bases.

Here, an instance is given by the input (d, F, s) which is of size
$O(mD)$: each column j of F contains at most md_j elements of K, and
the order sums to $d_1 + \cdots + d_n = |d| = D$. We neglect the size of the
shift s, since one may always assume that it is nonnegative and such that $\max(s) < mD$ (see [15, App. A]). Thus, ideally one would
like to have a certificate which can be verified in time $O(mD)$.

In this paper, we provide a non-interactive certification protocol
which uses the input (d, F, s), the output P, and a certificate which is a
constant matrix $C \in K^{m \times n}$. We design a Monte-Carlo verification
algorithm with cost bound $O(mD + m^{d+1} (m + n))$; this is optimal
as soon as D is large compared to m and n (e.g. when $D > m^2 + mn$),
which is most often the case of interest. We also show that the
certificate C can be computed in $O(m^{d+1}D)$ operations in K, which
is faster than known approximant basis algorithms.

Degrees and size of approximant bases. For $P \in K^{m \times m}$, we
denote the row degree of P as $\deg(P) = (r_1, \ldots, r_m)$ where $r_i = \deg(P_{i, *})$ is the degree of the row i of P for $1 \leq i \leq m$. The column
degree $\deg(P)$ is defined similarly. More generally, we will consider
row degrees shifted by some additive column weights: for a shift $S = (s_1, \ldots, s_m) \in \mathbb{Z}^m$ the s-row degree of P is $\deg_s(P) = (r_1 + s_1, \ldots, r_m + s_m)$.

We use $| \cdot |$ to denote the sum of integer tuples: for example
$|\deg_s(P)|$ is the sum of the s-row degree of P (note that this sum
might contain negative terms). The comparison of integer tuples
is entrywise: $|\deg_s(F)| < d$ means that the column j of F has degree
less than d_j, for $1 \leq j \leq n$. When adding a constant to a tuple, say
for example $s - 1$, this stands for the tuple $(s_1 - 1, \ldots, s_m - 1)$.

In existing approximant basis algorithms, the output bases may
take different forms: essentially, they can be s-minimal (also called
s-reduced [27]), s-weak Popov [23], or s-Popov [3]. For formal
definitions and for motivating the use of shifts, we direct the reader
to these references and to those above about approximant basis
algorithms; here the precise form of the basis will not play an
important role. What is however at the core of the efficiency of our
algorithms is the impact of these forms on the degrees in the basis.
In what follows, by size of a matrix we mean the number of field
elements used for its dense representation. We define the quantity

$$\text{Size}(P) = m^2 + \sum_{1 \leq i, j \leq m} \text{max}(0, \deg(p_{ij}))$$

for a matrix $P = [p_{ij}] \in \mathbb{K}^{m \times m}$. In the next paragraph, we
discuss degree bounds on P when it is the output of any of the
approximant basis algorithms mentioned above; note these bounds all imply that P has size in $O(mD)$.

There is no general degree bound for approximant bases: any
unimodular matrix is a basis of $A_d(0) = \mathbb{K}[X]^{m \times m}$. Still, a basis P of
$A_d(F)$ always satisfies $\deg(\det(P)) \leq D$. Now, for an s-minimal
P, we have $|\deg(P)| \in O(D)$ as soon as $|s - \min(s)| \in O(D)$ [27,
Thm. 4.1], and it was shown in [28] that P has size in $O(mD)$ if $\max(s) - |s| \in O(D)$. Yet, without such assumptions on the shift,
there are s-minimal bases whose size is in $O(m^2D)$ [15, App. B],
ruling out the feasibility of finding them in time $O(m^{d+1}D)$. In this
case, the fastest known algorithms return the more constrained
s-Popov basis P, for which $|\deg(P)| \leq D$ holds independently of s.

Problem and contribution. Certifying that a matrix P is an s-
minimal approximant basis for a given instance (d, F, s) boils down
to the following three properties of P:

1. **Minimal**: P is in s-reduced form. By definition, this amounts
to testing the invertibility of the so-called s-leading matrix
of P (see Step 1 of Algorithm 1 for the construction of this
matrix), which can be done using $O(m^d)$ operations in K.

2. **Approximant**: the rows of P are approximants. That is, we
should check that $\det(P) \neq 0 \mod X^d$. The difficulty is to avoid
computing the full truncated product $P \mod X^d$, since this costs
$O(m^{d+1})$. In Section 3, we give a probabilistic algorithm
which verifies more generally $P \equiv G \mod X^d$ using
$O(\text{Size}(P) + mD)$ operations, without requiring a certificate.

3. **Basis**: the rows of P generate the approximant module $\langle s \rangle$. For this, we prove that it suffices to verify first that $\det(P)$ is of the form cX^d
for some $c \in \mathbb{F} \setminus \{0\}$ and where $\delta = |\deg_s(P)|$, and
second that some constant $m \times (m + n)$ matrix has full rank;
this matrix involves $P(0)$ and the coefficient C of degree 0 of
PFX^{-d}. In Section 2, we show that C can serve as a certificate,
and that a probabilistic algorithm can assess its correctness
at a suitable cost.

Our (non-interactive) certification protocol is as follows. Given
(d, F, s), the **Prover** computes a matrix P, supposedly an s-minimal
basis of $A_d(F)$, along with a constant matrix $C \in K^{m \times n}$, supposedly
the coefficient of degree 0 of the product PFX^{-d}. Then, the **Prover**
communicates these results to the **Verifier** who must solve Problem 1
within a cost asymptotically better than $O(m^{d+1})$.

<table>
<thead>
<tr>
<th>Problem 1: Approximant basis certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
</tr>
<tr>
<td>• order $d \in \mathbb{Z}_{\geq 0}$</td>
</tr>
<tr>
<td>• matrix $F \in \mathbb{K}[X]^{m \times n}$ with $\deg(F) < d$,</td>
</tr>
<tr>
<td>• shift $s \in \mathbb{Z}^m$,</td>
</tr>
<tr>
<td>• matrix $P \in \mathbb{K}[X]^{m \times m}$,</td>
</tr>
<tr>
<td>• certificate matrix $C \in \mathbb{K}^{m \times n}$.</td>
</tr>
<tr>
<td>Output:</td>
</tr>
<tr>
<td>• True if P is an s-minimal basis of $A_d(F)$ and C is the coefficient of degree 0 of PFX^{-d}, otherwise False.</td>
</tr>
</tbody>
</table>

1This is not implied by (1) and (2): for $d = \max(d)$, then $X^d \text{Im} P$ is s-reduced and $X^d \text{Im} F = 0 \mod X^d$ holds; yet, $X^d \text{Im}$ is not a basis of $A_d(P)$ for most (F, d). |
The main result in this paper is an efficient solution to Problem 1.

Theorem 1.1. There is a Monte-Carlo algorithm which solves Problem 1 using $O(md + m^{o(1)}(m + n))$ operations in \mathbb{K}, assuming Size(F) $\in O(mD)$, that chooses $m + 2$ elements uniformly and independently at random from a finite subset $S \subset \mathbb{K}$. If S has cardinality at least $2(D + \gamma)$, then the probability that a True answer is incorrect is less than $1/2$, while a False answer is always correct.

A detailed cost bound showing the constant factors is described in Proposition 2.5. If Size(F) $\in O(mD)$, then the cost bound above is therefore optimal (up to constant factors) as soon as $m^{o(1)}(m + n) \in O(D)$.

If \mathbb{K} is a small finite field, there may be no subset $S \subset \mathbb{K}$ of cardinality $\#S \geq 2(D + 1)$. Then, our approach still works by performing the probabilistic part of the computation over a sufficiently large extension of \mathbb{K}. Note that an extension of degree about $1 + \lfloor \log_2(D) \rfloor$ would be suitable; this would increase our complexity estimates by a factor logarithmic in \mathbb{K}, which remains acceptable in our context.

Our second result is the efficient computation of the certificate.

Theorem 1.2. Let $d \in \mathbb{Z}_{\geq 0}^n$, let $F \in \mathbb{K}[X]^{m \times n}$ with $\text{deg}(F) < d$ and $m \in O(D)$, and let $P \in \mathbb{K}[X]^{m \times m}$. If $|\text{deg}(P)| \in O(D)$ or $|\text{deg}(P)| \in O(D)$, there is a deterministic algorithm which computes the coefficient of degree 0 of PF^{-d} using $O(m^{\omega+1}D \log(n/m))$ operations in \mathbb{K} if $m \geq n$ and $O(m^{\omega+1}D \log(n/m))$ operations in \mathbb{K} if $m < n$.

Note that the assumption $m \in O(D)$ in this theorem is commonly made in approximant basis algorithms, since when $D \leq m$ most entries of a minimal approximant basis have degree in $O(1)$ and the algorithms then rely on methods from dense \mathbb{K}-linear algebra.

2 CERTIFYING APPROXIMANT BASES

Here, we present our certification algorithm. Its properties, given in Proposition 2.5, prove Theorem 1.1. One of its core components is the verification of truncated polynomial matrix products; the details of this are in Section 3 and are taken for granted here.

First, we show the basic properties behind the correctness of this algorithm, which are summarized in the following result.

Theorem 2.1. Let $d \in \mathbb{Z}_{\geq 0}^n$, let $F \in \mathbb{K}[X]^{m \times n}$, and let $s \in \mathbb{Z}^m$. A matrix $P \in \mathbb{K}[X]^{m \times m}$ is an s-minimal basis of $\mathcal{A}_d(F)$ if and only if the following properties are all satisfied:

(i) P is s-reduced;
(ii) $\det(P)$ is a nonzero monomial in $\mathbb{K}[X]$;
(iii) the rows of P are in $\mathcal{A}_d(F)$, that is, $PF = 0 \mod X^d$;
(iv) $[P(0) \ C] \in \mathbb{K}^{m \times (m+n)}$ has full rank, where C is the coefficient of degree 0 of PF^{-d}.

We remark that having both $PF = 0 \mod X^d$ and C the constant coefficient of PF^{-d} is equivalent to the single truncated identity $PF = CX^d \mod X^s$, where $s = [d_1 + 1, \ldots, d_t + 1]$.

As mentioned above, the details of the certification of the latter identity is deferred to Section 3, where we present more generally the certification for truncated products of the form $PF = G \mod X^s$.

Concerning Item (ii), the fact that the determinant of any basis of $\mathcal{A}_d(F)$ must divide X^D, where $D = |s|$, is well-known; we refer to [2, Sec. 2] for a more general result.

The combination of Items (i) and (iii) describes the set of matrices $P \in \mathbb{K}[X]^{m \times m}$ which are s-reduced and whose rows are in $\mathcal{A}_d(F)$.

For P to be an s-minimal basis of $\mathcal{A}_d(F)$, its rows should further form a generating set for $\mathcal{A}_d(F)$; thus, our goal here is to prove that this property is realized by the combination of Items (ii) and (iv).

For this, we will rely on a link between approximant bases and kernel bases, given in Lemma 2.3. We recall that, for a given matrix $M \in \mathbb{K}[X]^{|x|\times y}$ of rank r,

- a kernel basis for M is a matrix in $\mathbb{K}[X]^{(y-r)\times y}$ whose rows form a basis of the left kernel $(p \in \mathbb{K}[X]^{|x| \times y} \mid \text{pm} = 0)$,
- a column basis for M is a matrix in $\mathbb{K}[X]^{y\times y}$ whose columns form a basis of the column space $(\text{Mp} \in \mathbb{K}[X]^{y\times 1})$.

In particular, by definition, a kernel basis has full row rank and a column basis has full column rank. The next result states that the column space of a kernel basis is the whole space (that is, the space spanned by the identity matrix).

Lemma 2.2. Let $M \in \mathbb{K}[X]^{|x|\times y}$ and let $B \in \mathbb{K}[X]^{y\times y}$ be a kernel basis for M. Then, any column basis for B is unimodular. Equivalently, $\text{BU} = I_y$ for some $U \in \mathbb{K}[X]^{y\times y}$.

Proof. Let $S \in \mathbb{K}[X]^{y\times y}$ be a column basis for B. By definition, $B = SB$ for some $B \in \mathbb{K}[X]^{y\times y}$. Then $0 = BM = SBM$, hence $BM = 0$ since S is nonsingular. Thus, B being a kernel basis for M, we have $\hat{B} = TB$ for some $T \in \mathbb{K}[X]^{y\times y}$. We obtain $ST(I_y - TB) = 0$, hence $ST = I_y$ since B has full row rank. Thus, S is unimodular. □

This arises for example in the computation of column bases and unimodular completions in [29, 30]; the previous lemma can also be derived from these references, and in particular from [29, Lem. 3.1].

Here, we will use the property of Lemma 2.2 for a specific kernel basis, built from an approximant basis as follows.

Lemma 2.3. Let $d \in \mathbb{Z}_{\geq 0}^n$, $F \in \mathbb{K}[X]^{m \times n}$, and $P \in \mathbb{K}[X]^{m \times m}$. Then, P is a basis of $\mathcal{A}_d(F)$ if and only if there exists $Q \in \mathbb{K}[X]^{m \times n}$ such that $[P \ Q]$ is a kernel basis for $[F^T - X^d]^T$. If this is the case, then we have $Q = \text{PF}^{-d}$ and there exist $V \in \mathbb{K}[X]^{m \times m}$ and $W \in \mathbb{K}[X]^{m \times m}$ such that $PV + QW = I_m$.

Proof. The equivalence is straightforward; a detailed proof can be found in [24, Lem. 8.2]. If $[P \ Q]$ is a kernel basis for $[F^T - X^d]^T$, then we have $PF = QX^d$, hence the explicit formula for Q. Besides, the last claim is a direct consequence of Lemma 2.2. □

This leads us to the following result, which forms the main ingredient that was missing in order to prove Theorem 2.1.

Lemma 2.4. Let $d \in \mathbb{Z}_{\geq 0}^n$ and let $F \in \mathbb{K}[X]^{m \times n}$. Let $P \in \mathbb{K}[X]^{m \times m}$ be such that $PF = 0 \mod X^d$ and $\det(P)$ is a nonzero monomial, and let $C \in \mathbb{K}^{m \times (m+n)}$ be the constant coefficient of PF^{-d}. Then, P is a basis of $\mathcal{A}_d(F)$ if and only if $[P(0) \ C] \in \mathbb{K}^{m \times (m+n)}$ has full rank.

Proof. First, assume that P is a basis of $\mathcal{A}_d(F)$. Then, defining $Q = \text{PF}^{-d}$ in Lemma 2.3, we obtain $PV + QW = I_m$ for some $V \in \mathbb{K}[X]^{m \times m}$ and $W \in \mathbb{K}[X]^{m \times m}$. Since $Q(0) = C$, this yields $P(0)V(0) + CW(0) = I_m$, and thus $[P(0) \ C]$ has full rank.

Now, assume that P is not a basis of $\mathcal{A}_d(F)$. If P has rank $< m$, then $[P(0) \ C]$ has rank $< m$ as well. If P is nonsingular, $P = UA$ for some basis A of $\mathcal{A}_d(F)$ and some $U \in \mathbb{K}[X]^{m \times m}$ which is nonsingular but not unimodular. Then, $\det(U)$ is a nonconstant divisor of the nonzero monomial $\det(P)$; hence $\det(U)(0) = 0 = \det(U(0))$, and
thus $U(0)$ has rank $< m$. Since $[P^\top Q^\top] = U[A^\top AFX^{-d}]$, it directly follows that $[P(0)^\top C^\top]$ has rank $< m$. □

PROOF OF THEOREM 2.1. If P is an s-minimal basis of $\mathcal{A}_d(F)$, then by definition Items (i) and (iii) are satisfied. Since the rows of $X_{\text{max}}(d)_{m \times n}$ are in $\mathcal{A}_d(F)$ and P is a basis, the matrix $X_{\text{max}}(d)_{m \times n}$ has an upper left submatrix of P and therefore the determinant of P divides $X_{\text{max}}(d)_{n \times n}$; it is a nonzero monomial. Then, according to Lemma 2.4, $[P(0)^\top C^\top]$ has full rank. Conversely, if Items (ii) to (iv) are satisfied, then Lemma 2.4 states that P is a basis of $\mathcal{A}_d(F)$; thus if furthermore Item (i) is satisfied then P is an s-minimal basis of $\mathcal{A}_d(F)$. □

Algorithm 1: CertifApproxBasis

Input:
1. order $d = (d_1, \ldots, d_n) \in \mathbb{N}_0^n$;
2. matrix $F \in \mathbb{K}[X]^{m \times n}$ with cdeg(F) $< d$;
3. shift $s = (s_1, \ldots, s_n) \in \mathbb{Z}^n$;
4. matrix $P \in \mathbb{K}[X]^{m \times m}$;
5. certificate matrix $C \in \mathbb{K}[X]^{m \times n}$.

Output: True if P is an s-minimal basis of $\mathcal{A}_d(F)$ and C is the constant term of PFX^{-d}, otherwise True or False.

1. /* P not in s-reduced form */
 L \leftarrow the matrix in $\mathbb{K}^{m \times n}$ whose rows are i, j is the coefficient of degree $\text{cdeg}(P_{i,j}) - s_j$ of the entry i, j of P
 If L is not invertible then return False
2. /* rank($P(0)^\top C^\top$) not full rank */
 If rank($P(0)^\top C^\top$) $< m$ then return False
3. /* det(P) not a nonzero monomial */
 S \leftarrow a finite subset of \mathbb{K}
 $D \leftarrow [\text{cdeg}(P)] - |s|$
 $a \leftarrow$ chosen uniformly at random from S
 If det($P(a)$) $\neq \det(P(1))a^D$ then return False
4. /* certify truncated product */
 PF $\leftarrow CX^d \mod X^1$ */
 t $\leftarrow (d_1 + 1, \ldots, d_n + 1)$
 Return $\text{VerifTruncMatProd}(t, P, F, CX^d)$

In order to provide a sharp estimate of the cost of Algorithm 1, we recall the best known cost bound with constant factors of the LQUP factorization of an $m \times n$ matrix over \mathbb{K}, which we use for computing ranks and determinants. Assuming $m \leq n$, we have:

$$C(m, n) = \left(\frac{n}{m} \right)^{\frac{n}{m}} \frac{1}{\sqrt{2\pi n - 2}} \right) \frac{MM(m)}{MM(n)}$$

operations in \mathbb{K} [6, Lem. 5.1], where $MM(m)$ is the cost for the multiplication of $m \times n$ matrices over \mathbb{K}.

PROPOSITION 2.5. Algorithm 1 uses at most

$$\begin{align*}
\text{Size}(P) + 2m(D + \max(d)) + 3\text{c}(m, m) + C(m, m + n) \\
+ 4m + 1 + 4 \log_2(D_1 \cdots d_n)
\end{align*}$$

operations in \mathbb{K}, where $D = \lceil d \rceil$. It is a false-biased Monte Carlo algorithm. If P is not an s-minimal basis of $\mathcal{A}_d(F)$, then the probability that it outputs True is less than $\frac{D_1 + 1}{\text{Size}(P) + mD + m^{a - 1} + m^{b - 1} + m^{c - 1}}$, where S is the finite subset of \mathbb{K} from which random field elements are drawn.

Proof. By definition, P is s-reduced if and only if its s-leading matrix L computed at Step 1 is invertible. Thus, Step 1 correctly tests the property in item (i) of Theorem 2.1 and uses at most $C(m, m)$ operations in \mathbb{K}. Furthermore, Step 2 correctly tests the first part of Item (iv) of Theorem 2.1 and uses at most $C(m, m + n)$ operations.

Step 3 performs a false-biased Monte Carlo verification of Item (ii) of Theorem 2.1. Indeed, since P is s-reduced (otherwise the algorithm would have exited at Step 1), we know from [16, Sec. 6.3.2] that $\deg(\det(P)) = \Delta = \lceil \deg_g(P) \rceil - |s|$. Thus, $\det(P)$ is a nonzero monomial if and only if $\det(P) = \det(P(1))X^\Delta$. Step 3 tests the latter equality by evaluation at a random point a. The algorithm only returns False if $\det(P(a)) \neq \det(P(1))a^\Delta$, in which case $\det(P)$ is indeed not a nonzero monomial. Furthermore, if we have $\det(P) \neq \det(P(1))X^\Delta$, then the probability that the algorithm fails to detect this, meaning that $\det(P(a)) = \det(P(1))a^\Delta$, is at most $\frac{\Delta}{\text{Size}(P)}$. Since $\Delta \leq D$ according to [27, Thm. 4.1], this is also at most $\frac{D+1}{\text{Size}(P)}$. The evaluations $P(a)$ and $P(1)$ are computed using respectively at most $2\text{Size}(P) - m^2$ operations and at most $\text{Size}(P) - m^2$ additions. Then, computing the two determinants $\det(P(a))$ and $\det(P(1))$ uses at most $2C(m, m) + 2m$ operations. Finally, computing $\det(P(1))a^\Delta$ uses at most $2\log_2(\Delta) + 1 \leq 2\log_2(D) + 1$ operations.

Summing the cost bounds for the first three steps gives

$$3\text{Size}(P) - m^2 + 3C(m, m) + C(m, m + n) + 2m + 2\log_2(D) + 1 \leq 3\text{Size}(P) + 3C(m, m) + C(m, m + n) + 2\log_2(D).$$

(2)

Step 4 tests the identity $PF \equiv CX^d \mod X^1$, which corresponds to both Item (iii) of Theorem 2.1 and the second part of Item (iv). Proposition 3.2 ensures that:

1. If the call to VerifTruncMatProd returns False, we have $PF \equiv CX^d \mod X^1$, and Algorithm 1 correctly returns False.
 /* $\text{Size}(P)$ not a nonzero monomial */
2. /* certify truncated product */
 PF $\leftarrow CX^d \mod X^1$ holds, the probability that Algorithm 1 fails to detect this (that is, the call at Step 4 returns True) is less than $\frac{D + 1}{\text{Size}(P)}$.

A cost bound for Step 4 is given in Proposition 3.2, with a minor improvement for the present case given in Remark 3.3. Summing it with the bound in Eq. (2) gives a cost bound for Algorithm 1, which is bounded from above by that in the proposition.

Finally, thanks to Theorem 2.1, the above considerations show that when the algorithm returns False, then P is indeed not an s-minimal basis of $\mathcal{A}_d(F)$. On the other hand, if P is an s-minimal basis of $\mathcal{A}_d(F)$, the algorithm returns True if and only if one of the probabilistic verifications in Steps 3 and 4 take the wrong decision. According to the probabilities given above, this may happen with probability less than $\frac{D + 1}{\text{Size}(P)}$, which is bounded from above by that in the proposition.

1. VerifyTruncMatProd used in Algorithm 1.

Given a truncation order t and polynomial matrices P, F, G, our goal is to verify that $PF = G \mod X^t$ holds with good probability. Without loss of generality, we assume that the columns of F and G are already truncated with respect to the order t, that is, $\text{cdeg}(F) < t$ and $\text{cdeg}(G) < t$. Similarly, we assume that P is truncated with respect to $t = \max(t)$, that is, $\deg(P) < t$.

3 VERIFYING A TRUNCATED PRODUCT

In this section, we focus on the verification of truncated products of polynomial matrices, and we give the corresponding algorithm VerifTruncMatProd used in Algorithm 1.

Given a truncation order t and polynomial matrices P, F, G, our goal is to verify that $PF = G \mod X^t$ holds with good probability.
Problem 2: TRUNCATED MATRIX PRODUCT VERIFICATION

Input:
• truncation order $t \in \mathbb{Z}^n_{>0}$,
• matrix $P \in \mathbb{K}[X]^{m \times n}$ with $\deg(P) < \max(t)$,
• matrix $F \in \mathbb{K}[X]^{m \times n}$ with $\deg(F) < t$,
• matrix $G \in \mathbb{K}[X]^{m \times n}$ with $\deg(G) < t$.

Output:
• True if $PF = G \mod X^t$, otherwise False.

Obviously, our aim is to obtain a verification algorithm which has a significantly better cost than the straightforward approach which computes the truncated product $PF \mod X^t$ and compares it with the matrix G. To take an example: if we have $n \in O(m)$ as well as $[\deg(P)] \in O(\lfloor t \rfloor)$ or $[\deg(P)] \in O(\lfloor t \rfloor)$, as commonly happens in approximant basis computations, then this truncated product $PF \mod X^t$ can be computed using $O(m^{\omega-1} \lfloor t \rfloor)$ operations in \mathbb{K}.

For verifying the non-truncated product $PF = G$, the classical approach would be to use evaluation at a random point, following ideas from [5, 25, 32]. However, evaluation does not behave well with regards to truncation. A similar issue was tackled in [13] for the verification of the middle product and the short products of univariate polynomials. The algorithm of [13] can be adapted to work with polynomial matrices by writing them as univariate polynomials with matrix coefficients; for example, P is a polynomial $P = \sum_{0 \leq \delta < \delta} P_{\delta} X^\delta$ with coefficients $P_{\delta} \in \mathbb{K}[X]^{m \times n}$. While this leads to a verification of $PF = G \mod X^t$ with a good probability of success, it has a cost which is close to that of computing $PF \mod X^t$.

To lower down the cost, we will combine the evaluation of truncated products from [13] with Freivalds’ technique [11]. The latter consists in left-multiplying the matrices by some random vector $u \in \mathbb{K}^{1 \times m}$, and rather checking whether $uPF = uG \mod X^t$; this effectively reduces the row dimension of the manipulated matrices, leading to faster computations. Furthermore, this does not harm the probability of success of the verification, as we detail now.

In what follows, given a matrix $A \in \mathbb{K}[X]^{m \times n}$ and an order $t \in \mathbb{Z}^n_{>0}$, we write $A \rem X^t$ for the (unique) matrix $B \in \mathbb{K}[X]^{m \times n}$ such that $B = A \mod X^t$ and $\deg(B) < t$. For simplicity, we will often write $A_{ij} \rem X^t$ to actually mean $(A_{ij} + \delta) \rem X^t$.

Lemma 3.1. Let S be a finite subset of \mathbb{K}. Let $u \in \mathbb{K}^{1 \times m}$ with entries chosen uniformly and independently at random from S, and let $a \in \mathbb{K}$ be chosen uniformly at random from S. Assuming $PF \neq G \mod X^t$, the probability that $(uPF \rem X^t)(a) = uG(a)$ is less than $\frac{\max(t)}{\min(s)}$.

Proof. Let $A = (PF - G) \rem X^t$. By assumption, there exists a pair (i, j) such that the entry (i, j) of A is nonzero. Since this entry is a polynomial in $\mathbb{K}[X]$ of degree δ at most $\max(t)$, the probability that α is a root of this entry is at most $\alpha < \frac{1}{\min(s)}$. As a consequence, we have $A(\alpha) \neq 0 \in \mathbb{K}^{m \times n}$ with probability at least $1 - e^{-\alpha} \frac{1}{\max(t)}$. In this case, $uA(\alpha) = 0$ occurs with probability at most $\frac{1}{\min(s)}$.

Thus, altogether the probability that $uA(\alpha) = 0$ is bounded from above by $\alpha < \frac{1}{\min(s)} + \left(1 - e^{-\alpha} \frac{1}{\max(t)}\right) < \frac{1}{\min(s)}$, which concludes the proof. □

We deduce an approach to verify the truncated product: compute $uA(\alpha) = (uPF - uG) \rem X^t(\alpha)$ and check whether it is zero or nonzero. The remaining difficulty is to compute $uA(\alpha)$ efficiently: we will see that this can be done in $O(\text{Size}(P) + m|t|)$ operations.

For this, we use a strategy similar to that in [15, Lem. 4.1] and essentially based on the following formula for the truncated product. Consider a positive integer $t \leq \delta$ and a vector $f \in \mathbb{K}[X]^{m \times 1}$ of degree less than t; one may think of f as a column $F_{\alpha, i}$ of F and of t as the corresponding order t_j. Writing $f = \sum_{0 \leq k < \delta} f_k X^k$ with $f_k \in \mathbb{K}[X]^{m \times 1}$ and $uP = \sum_{0 \leq k < \delta} p_k X^k$ with $p_k \in \mathbb{K}[X]^{1 \times m}$, we have

$$uPF \rem X^t = \sum_{k=0}^{t-2} \left(\sum_{0 \leq i < \delta} p_{t-i-k} f_i X^k\right) f_k \rem X^i = X^{t-1} \sum_{k=0}^{t-1} \left(\sum_{i=0}^{t-1-k} p_{t-i-k} X^{i-1} f_i\right) f_k.$$ Thus, the evaluation can be expressed as

$$uPF \rem X^t(\alpha) = \alpha^{t-1} \sum_{k=0}^{t-1} c_{t-1-k} f_k,$$ where we define, for $0 \leq k < \delta$,

$$c_k = (uPF \rem X^{k+1})(\alpha) = \sum_{i=0}^{k} p_{t-i} \alpha^i \in \mathbb{K}^{1 \times m}.$$ These identities give an algorithm to compute the truncated product evaluation $(uPF \rem X^t)(\alpha)$, which we sketch as follows:

1. apply Horner’s method to the reversal of $uPF \rem X^t$ at the point α^{-1}, storing the intermediate results which are exactly the t vectors c_0, \ldots, c_{t-1};
2. compute the scalar products $\lambda_k = c_{t-1-k} f_k$ for $0 \leq k < t$;
3. compute α^t and then $\alpha^{t-1} \sum_{0 \leq k < t} \lambda_k$.

The last step gives the desired evaluation according to Eq. (3). In our case, this will be applied to each column $f = F_{\alpha, j}$ for $1 \leq j \leq n$. We will perform the first item only once to obtain the δ vectors $c_0, \ldots, c_{\delta-1}$, since they do not depend on f.

Proposition 3.2. Algorithm 2 uses at most

$2\text{Size}(P) + (6m + 1)|t| + 2n \log_2(\delta)$

operations in \mathbb{K}, where $\delta \leq |t|$ is the largest of the truncation orders. It is a false-biased Monte Carlo algorithm. If $PF \neq G \mod X^t$, the probability that it outputs True is less than $\frac{1}{\delta}$, where S is the finite subset of \mathbb{K} from which random field elements are drawn.

Proof. The discussion above shows that this algorithm correctly computes $[\delta_j]_{1 \leq j \leq n} = uG(\alpha)$ and $[\delta_j]_{1 \leq j \leq n} = (uPF \rem X^t)(\alpha)$. If it returns False, then there is at least one j for which $\delta_j' \neq \delta_j$, thus we must have $uPF \rem X^t \neq uG$ and therefore $PF \neq G \mod X^t$. Besides, the algorithm correctly returns True if $PF = G \mod X^t$.

The analysis of the probability of failure (the algorithm returns True while $PF \neq G \mod X^t$) is a direct consequence of Lemma 3.1. Step 2 uses at most $2\text{Size}(P) + (2m - 1)|t|$ operations in \mathbb{K}. The Horner evaluations at Steps 3 and 4 require at most $2(|t| - n)$ and at most $1 + 2m(\delta - 1)$ operations, respectively. Now, we consider the j-th iteration of the loop at Step 5. The scalar products $\lambda_k = c_{t-1-k} f_k$ are computed using at most $(2m - 1)t_j$ operations; the sum and multiplication by α^{t-1} giving δ_j' use at most $t_j + 2 \log_2(t_j - 1)$ operations. Summing over $1 \leq j \leq n$, this gives a total of at most
Algorithm 2: VerifTruncMatProd
Input:
- truncation order $t = (t_1, \ldots, t_n) \in \mathbb{Z}^n_{\geq 0}$
- matrix $P \in \mathbb{K}[X]_{m \times m}$ such that $\deg(P) < \delta = \max(t)$
- matrix $F = [f_{ij}] \in \mathbb{K}[X]_{m \times m}$ with $\deg(F) < t$
- matrix $G \in \mathbb{K}[X]_{m \times m}$ with $\deg(G) < t$
Output: True if $PF = G \mod X^t$, otherwise True or False.
1. /* Main objects for verification */
 $S \leftarrow$ a finite subset of \mathbb{K}
 $\alpha \leftarrow$ element of \mathbb{K} chosen uniformly at random from S
 $u \leftarrow$ vector in $\mathbb{K}^{\times n}$ with entries chosen uniformly and independently at random from S
2. /* Freivalds: row dimension becomes 1 */
 $p \leftarrow uP$ // in $\mathbb{K}[X]_{m \times m}$, degree $< \delta$
 $g \leftarrow uG$ // in $\mathbb{K}[X]_{m \times n}$, $\deg(g) < t$
3. /* Evaluation of right-hand side: $uP(a)$ */
 write $g = [g_1 \cdots g_n]$ with $g_j \in \mathbb{K}[X]$ of degree $< t_j$
 For j from 1 to n:
 $e_j \leftarrow g_j(a)$
4. /* Truncated evaluation $c_0, \ldots, c_{\delta-1}$ */
 write $p = \sum_{0 \leq j < \delta} p_k X^k$ with $p_k \in \mathbb{K}^{1 \times m}$
 $c_0 \leftarrow p_0$
 For k from 1 to $\delta - 1$:
 $c_k \leftarrow p_k + \alpha^{-1} c_{k-1}$
5. /* Evaluation of left-hand side: $(uP \rem X^t)(a) */
 For j from 1 to n: // process column $F_{\cdot,j}$
 write $F_{\cdot,j} = \sum_{0 \leq k < t_j} f_{ij} X^k$
 $(\ell_k)_{0 \leq k < t_j} \leftarrow (c_{t_j-1-k} \cdot f_{ij})_{0 \leq k < t_j}$
 $c_{t_j} \leftarrow \alpha^{t_j-1} \sum_{0 \leq k < t_j} \ell_k$
6. If $e_j \neq c_{t_j}$ for some $j \in \{1, \ldots, n\}$ then return False
 Else return True

$2m|t| + 2 \log_2((t_1 - 1) \cdots (t_n - 1))$ operations for Step 5. Finally, Step 6 uses at most n comparisons of two field elements. Summing these bounds for each step yields the cost bound

$2\text{Size}(P) + (4m + 1)|t| + 2m(\delta - 1) - n + 2 \log_2((t_1 - 1) \cdots (t_n - 1)), \ (5)$

which is at most the quantity in the proposition. \hfill \Box

In the verification of approximant bases, we want to verify a truncated matrix product in the specific case where each entry in the column j of G is simply zero or a monomial of degree $t_j - 1$. Then, a slightly better cost bound can be computed, as follows.

Remark 3.3. Assume that $t = (t_1, \ldots, t_n + 1)$ and $G = CX^d$, for some $d = (d_1, \ldots, d_n) \in \mathbb{Z}^n_{\geq 0}$ and some constant $C \in \mathbb{K}^{m \times n}$. Then, the computation of uG at Step 2 uses at most $(2m - 1)n$ operations in \mathbb{K}. Besides, since the polynomial g_j at Step 3 is either zero or a monomial of degree d_j, its evaluation e_j is computed using at most $2 \log_2(d_j + 1)$ operations via repeated squaring [12, Sec. 4.3]. Thus, Step 3 uses at most $2 \log_2(d_1 \cdots d_n) + n$ operations. As a result, defining $D = |d|$, the cost bound in Eq. (5) is lowered to

$2\text{Size}(P) + 2m(|t| + \delta - 1 + n) + n + 4 \log_2(d_1 \cdots d_n + 1) = 2\text{Size}(P) + 2m(D + \max(d)) + 2n + n + 4 \log_2(d_1 \cdots d_n) + 1. \ \Box$

4 COMPUTING THE CERTIFICATE

4.1 Context

In this section, we show how to efficiently compute the certificate $C \in \mathbb{K}^{m \times n}$, which is the term of degree 0 of the product PF^{-d}, whose entries are Laurent polynomials (they are in $\mathbb{K}[X]$ if and only the rows of P are approximants). Equivalently, the column $C_{\cdot,j}$ is the term of degree d_j of the column j of PF, where $d = (d_1, \ldots, d_n)$.

We recall the notation $D = d_1 + \cdots + d_n$. Note that, without loss of generality, we may truncate P so that $\deg(P) \leq \max(d)$.

For example, suppose that the dimensions and the order are balanced: $m = n$ and $d = (D/m, \ldots, D/m)$. Then, $C \in \mathbb{K}^{m \times m}$ is the coefficient of degree D/m of the product PF, where P and F are $m \times m$ matrices over \mathbb{K}. Thus C can be computed using D/m multiplications of $m \times m$ matrices over \mathbb{K}, at a total cost $O(m^{\omega-1}D)$.

Going back to the general case, the main obstacle to obtain similar efficiency is that both the degrees in P and the order d (hence the degrees in F) may be unbalanced. Still, we have $\deg(F) < d$ with sum $|d| = D$ and, as stated in the introduction, we may assume that either $\deg(P) \in O(D)$ or $\deg(P) \leq D$ holds. In this context, both P and F are represented by $O(mD)$ field elements.

We will generalize the method above for the balanced case to this general situation with unbalanced degrees, achieving the same cost $O(m^{\omega-1}D)$. As a result, computing the certificate C has negligible cost compared to the fastest known approximant basis algorithms. Indeed, the latter are in $O(m^{\omega-1}D)$, involving logarithmic factors in D coming both from polynomial arithmetic and from divide and conquer approaches. We refer the reader to [28, Thm. 5.3] and [15, Thm. 1.4] for more details on these logarithmic factors.

We first remark that C can be computed by naive linear algebra using $O(m^2D)$ operations. Indeed, writing $\deg(P) = (r_1, \ldots, r_m)$, we have the following explicit formula for each entry in C:

$$C_{i,j} = \sum_{k=1}^{\min(r_i, d_j)} P_{i,k} F_{k,j},$$

where $P_{i,k}$ is the coefficient of degree k of the row i of P and similar notation is used for F. Then, since $\min(r_i, d_j) \leq d_j$, the column $C_{\cdot,j}$ is computed via md_j scalar products of length m, using $O(m^2d_j)$ operations. Summing this for $1 \leq j \leq n$ yields $O(m^2D)$.

This approach considers each column of F separately, allowing us to truncate at precision $d_j + 1$ for the column j and thus to rule out the issue of the unbalancedness of the degrees in P. However, this also prevents us from incorporating fast matrix multiplication. In our efficient method, we avoid considering columns or rows separately, while still managing to handle the unbalancedness of the degrees in both P and F. Our approach bears similarities with algorithms for polynomial matrix multiplication with unbalanced degrees (see for example [31, Sec. 3.6]).

4.2 Sparsity and degree structure

Below, we first detail our method assuming $\deg(P) \in O(D)$; until further notice, $\gamma \geq 1$ is a real number such that $\deg(P) \leq \gamma D$.

To simplify the exposition, we start by replacing the tuple d by the uniform bound $d = \max(d)$. To achieve this, we consider the matrix $H = FX^{-d}$, where $d - d$ stands for $(d - d_1, \ldots, d - d_n)$; then, C is the coefficient of degree d in PH.
Since $\text{cdeg}(F) < d$, we have $\text{deg}(H) < d$. The fact that F has column degree less than d translates into the fact that H has column valuation at least $d - 2d$ (and degree less than d); like F, this matrix H is represented by mD field elements. Recalling the assumption $\text{deg}(P) \leq d$, we can write $P = \sum_{k=0}^{d-1} P_k X^k$ and $H = \sum_{k=0}^{d-1} H_k X^k$, where $P_k \in \mathbb{K}^{m \times m}$ and $H_k \in \mathbb{K}^{m \times d}$ for all k (note that $H_d = 0$).

Then, our goal is to compute the matrix

$$C = \sum_{k=1}^{d} P_k H_{d-k}. \quad (6)$$

The essential remark to design an efficient algorithm is that each matrix P_k has only few nonzero rows when k becomes large, and each matrix H_{d-k} has only few nonzero columns when k becomes large. To state this formally, we define two sets of indices, for the rows of degree at least k in P and for the orders at least k in D:

$$\mathcal{R}_k = \{i \in [1, \ldots, m] \mid \text{rdeg}(P_{i,k}) \geq k\}.$$
$$\mathcal{D}_k = \{j \in [1, \ldots, n] \mid d_j \geq k\}.$$

The latter corresponds to the set of indices of columns of F which are allowed to have degree $\geq k - 1$ or, equivalently, to the set of indices of columns of H which are allowed to have degree $\leq d - k$.

Lemma 4.1. For a given $k \in [1, \ldots, d]$ if $i \notin \mathcal{R}_k$, then the row i of P_k is zero; if $j \notin \mathcal{D}_k$, then the column j of H_{d-k} is zero. In particular, P_k has at most $|\mathcal{R}_k|$ nonzero rows and H_{d-k} has at most $|\mathcal{D}_k|$ nonzero columns.

Proof. The row i of P_k is the coefficient of degree k of the row i of P. If it is nonzero, we must have $i \in \mathcal{R}_k$. Similarly, the column j of H_{d-k} is the coefficient of degree $d - k$ of the column j of $H = FX^d$. If it is nonzero, we must have $d - k \geq d - d_j$, hence $k \in \mathcal{D}_k$.

The upper bounds on the cardinalities of \mathcal{R}_k and \mathcal{D}_k follow by construction of these sets: we have $k \cdot |\mathcal{R}_k| \leq |D| = D$, and also $k \cdot |\mathcal{D}_k| \leq |\text{rdeg}(P)|$ with $|\text{rdeg}(P)| \leq y D$ by assumption. \hspace{1cm} \Box

4.3 Algorithm and cost bound

Following Lemma 4.1, in the computation of C based on Eq. (6) we may restrict our view of P_k to its submatrix with rows in \mathcal{R}_k, and our view of H_k to its submatrix with columns in \mathcal{D}_k. For example, if $k > yD/m$ and $k > D/n$, the matrices in the product $P_k H_k$ have dimensions at most $[yD/k] \times m$ and $m \times [D/k]$. These remarks on the structure and sparsity of P_k and H_k lead us to Algorithm 3.

Proposition 4.2. Algorithm 3 is correct. Assuming that $m \in O(D)$ and $|\text{rdeg}(P)| \in O(D)$, where $D = |D|$, it uses $O(m^{\alpha - 1} D)$ operations in \mathbb{K} if $n \leq m$ and $O(m^{\alpha - 1} D \log(n/m))$ operations in \mathbb{K} if $n > m$.

Proof. For the correctness, note that for all j of the coefficient of degree $d_j - k$ of $F_{x,j}$ is the coefficient of degree $d - k$ of $H_{x,j}$. Thus, using notation from Section 4.2, the matrix B at the iteration k of the loop is exactly the submatrix of H_{d-k} of its columns in \mathcal{D}_k. Therefore, the loop in Algorithm 3 simply applies Eq. (6), discarding from P_k and $F_{x,k}$ rows and columns which are known to be zero.

Now, we estimate the cost of updating C at each iteration of the loop. Precisely, the main task is to compute AB, where the matrices A and B have dimensions $|\mathcal{R}| \times m$ and $m \times |\mathcal{D}|$. Then, adding this product to the submatrix $C_{R,D}$ only costs $|\mathcal{R}| \cdot |\mathcal{D}|$ additions in \mathbb{K}.

Algorithm 3: Cost of $C_{R,D}$

Input:
- order $d \in \mathbb{Z}_n$
- matrix $F \in \mathbb{K}[X]^{m \times n}$ such that $\text{cdeg}(F) < d$
- matrix $P \in \mathbb{K}[X]^{m \times m}$ such that $\text{deg}(P) \leq \max(d)$.

Output: the coefficient $C \in \mathbb{K}[X]$ of degree 0 of PFX^d.

1. $(r_1, \ldots, r_m) \leftarrow \text{rdeg}(P)$
2. $C \leftarrow 0 \in \mathbb{K}^{m \times n}$
3. For k from 1 to $\max(d)$:
 - $\mathcal{R}_k = \{i \in [1, \ldots, m] \mid r_i \geq k\}$
 - $\mathcal{D}_k = \{j \in [1, \ldots, n] \mid d_j \geq k\}$
 - $A \in \mathbb{K}^{|\mathcal{R}_k| \times |\mathcal{D}_k|}$
 - $B \in \mathbb{K}^{m \times |\mathcal{R}_k|}$
 - $C_{R,D} \leftarrow C_{R,D} + AB$
4. Return C

Consider $y = \lfloor |\text{rdeg}(P)| / D \rfloor \geq 1$ (indeed, if $|\text{rdeg}(P)| = 0$, then P is constant and $C = 0$). By Lemma 4.1, at the iteration k we have $|\mathcal{R}| \leq \min(m, yD/k)$ and $|\mathcal{D}| \leq \min(n, D/k)$. We separate the cases $n \leq m$ and $m > n$, and we use the bound $|yD/m| \in O(D/m)$, which comes from our assumptions $m \in O(D)$ and $y \in O(1)$.

First, suppose $n \leq m$. At the iterations $k < yD/m$ the matrices A and B both have dimensions at most $m \times m$, hence their product can be computed in $O(m^{\alpha - 1})$ operations. These iterations have a total cost of $O(m^{\alpha - 1}(yD/m)) \subseteq O(m^{\alpha - 1}D)$. At the iterations $k \geq yD/m$, A and B have dimensions at most $(yD/k) \times m$ and $m \times (D/k)$, with $D/k \leq yD/k \leq m$; computing their product costs $O((D/k)^{\alpha - 1}m) \subseteq O(mD^{\alpha - 1}k^{1-\alpha})$. Thus, the total cost for these iterations is in

$$O \left(mD^{\alpha - 1} \sum_{k=\lfloor yD/m\rfloor}^{\max(d)} k^{1-\alpha} \right) \subseteq O \left(mD^{\alpha - 1} \left(\frac{yD/m}{D/n} \right)^{2-\alpha} \sum_{k=0}^{\infty} n^{(2-\alpha)} \right) \subseteq O(m^{\alpha - 1}D).$$

For the first inclusion, we apply Lemma 4.3 with $\mu = \lfloor yD/m \rfloor$, $v = \max(d)$, and $\theta = 1 - \omega$. For the second, the sum is finite since $2^{2-\alpha} < 1$. Hence Algorithm 3 costs $O(m^{\alpha - 1}D)$ in the case $n \leq m$.

Now, suppose $n > m$. At the iterations $k < [D/n]$, A and B have dimensions at most $m \times m$ and $m \times n$, hence their product can be computed in $O(m^{\alpha - 1}n)$. The total cost is in $O(m^{\alpha - 1}D)$ since there are $[D/n] - 1 < D/n$ iterations (with $n \leq D$ by definition). For the iterations $k \geq [D/n]$, we repeat the analysis done above for the same values of k: these iterations cost $O(m^{\alpha - 1}D)$ here as well.

Finally, for the iterations $[D/n] \leq k < [yD/m]$, A and B have dimensions at most $m \times m$ and $m \times (D/k)$, with $D/k \leq n$. Thus the product AB can be computed in $O(m^{\alpha - 1} + m^{\alpha - 1}D/k)$ operations. Summing the term $m^{\alpha - 1}$ over these $O(D/m)$ iterations yields the cost $O(m^{\alpha - 1}D)$. Summing the other term gives the cost $O(m^{\alpha - 1}D \log(n/m))$ since, by the last claim of Lemma 4.3, we have

$$\sum_{k=\lfloor D/n \rfloor}^{\lfloor yD/m \rfloor - 1} k^{1-\alpha} \leq 1 + \log_2 \left(\frac{|yD/m|}{[D/n]} - 1 \right) \leq 1 + \log_2 (yn/m).$$

Adding the costs of the three considered sets of iterations, we obtain the announced cost for Algorithm 3 in the case $n > m$ as well. \hspace{1cm} \Box
Lemma 4.3. Given integers $0 < \mu < \nu$ and a real number $\theta \leq 0$,
\[
\sum_{k=\mu}^{\nu} k^\theta \leq \mu^{\theta+1} + \sum_{i=0}^{\ell-1} \nu^{(i+1)}
\]
holds, where $\ell = \lfloor \log_2(\nu/\mu) \rfloor + 1$. In particular, $\sum_{k=\mu}^{\nu} k^{-1} \leq \ell$.

Proof. Note that ℓ is chosen such that $2^\ell \mu - 1 \geq \nu$. Then, the upper bound is obtained by splitting the sum as follows:
\[
\sum_{k=\mu}^{\nu} k^\theta \leq \sum_{k=2\mu}^{2^{\ell+1} \mu - 1} k^\theta \leq \sum_{i=0}^{\ell-1} \sum_{k=2^i \mu}^{2^{i+1} \mu} (2^i \mu)^\theta = \sum_{i=0}^{\ell-1} (2^i \mu)^{\theta+1},
\]
where the second inequality comes from the fact that $x \mapsto x^\theta$ is decreasing on the positive real numbers.

Finally, we describe minor changes in Algorithm 3 to deal with the case of small average column degree $c\deg(P) \in O(D)$; precisely, we replace the assumption $|c\deg(P)| \leq \gamma D |\deg(P)| \leq \gamma D$. Then, instead of the set R_k used above, we rather define
\[
C_k = \{ j \in \{1, \ldots, m\} \mid c\deg(P_{x_j}) \geq k \}.
\]
Then we have the following lemma, analogous to Lemma 4.1.

Lemma 4.4. For $k \in \{1, \ldots, m\}$ and $j \notin C_k$, the column j of P_k is zero. In particular, P_k has at most $#C_k \leq \gamma D |\gamma k|$ nonzero columns.

Thus, we can modify Algorithm 3 to take into account the column degree of P instead of its row degree. This essentially amounts to redefining the matrices A and B in the loop as follows:
- $A \in \mathbb{R}^{m \times C_k}$ is the coefficient of degree k of $P_k C_k$.
- $B \in \mathbb{R}^{k \times C_k} \times t$ is such that for all $i \in C_k$ and $1 \leq j \leq t$, $B_{i,j}$ is the coefficient of degree $d_j - k$ of F_{i,c_j}.

These modifications have obviously no impact on the correctness. Furthermore, it is easily verified that the same cost bound holds since we obtain a similar matrix multiplication cost at each iteration.

5 PERSPECTIVES

As noted in the introduction, our certificate is almost optimal since we can verify it at a cost $O(mD + m^{(m-1)}(m + n))$ while the input size is mD. One should notice that the extra term $O(m^{(m-1)}(m + n))$ corresponds to certifying problems of linear algebra over \mathbb{R}, namely the rank and the determinant. These could actually be dealt with in $O(m(m + n))$ operations using interactive certificates built upon the results in [7, 9, 18], thus yielding an optimal certificate. Still, for practical applications, our simpler certification should already be significantly faster than the approximant basis computation, since the constants involved in the cost are small as we have observed in our estimates above. We plan to confirm this for the approximant bases implementations in the LinBox library.

Finally, our verification protocol needs $(m + 2) \log_2(\#S)$ random bits, yielding a probability of failure less than 2^{-m} in \mathbb{R}.

REFERENCES