Interactive Certificates for Polynomial Matrices with Sub-Linear Communication

Abstract : We develop and analyze new protocols to verify the correctness ofvarious computations on matrices over F[x], where F is a field. Theproperties we verify concern an F[x]-module and therefore cannotsimply rely on previously-developed linear algebra certificates whichwork only for vector spaces. Our protocols are interactivecertificates, often randomized, and featuring a constant number ofrounds of communication between the prover and verifier. We seek tominimize the communication cost so that the amount of data sent duringthe protocol is significantly smaller than the size of the resultbeing verified, which can be useful when combining protocols or insome multi-party settings. The main tools we use are reductions toexisting linear algebra certificates and a new protocol to verify thata given vector is in the F[x]-linear span of a given matrix.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger
Contributeur : Vincent Neiger <>
Soumis le : mardi 3 juillet 2018 - 18:33:55
Dernière modification le : lundi 21 octobre 2019 - 09:38:03
Document(s) archivé(s) le : lundi 1 octobre 2018 - 10:43:42


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01829139, version 1



David Lucas, Vincent Neiger, Clement Pernet, Daniel Roche, Johan Rosenkilde. Interactive Certificates for Polynomial Matrices with Sub-Linear Communication. 2018. ⟨hal-01829139⟩



Consultations de la notice


Téléchargements de fichiers