Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Verification Protocols with Sub-Linear Communication for Polynomial Matrix Operations

Abstract : We design and analyze new protocols to verify the correctness of various computations on matrices over the ring F[x] of univariate polynomials over a field F. For the sake of efficiency, and because many of the properties we verify are specific to matrices over a principal ideal domain, we cannot simply rely on previously-developed linear algebra protocols for matrices over a field. Our protocols are interactive, often randomized, and feature a constant number of rounds of communication between the Prover and Verifier. We seek to minimize the communication cost so that the amount of data sent during the protocol is significantly smaller than the size of the result being verified, which can be useful when combining protocols or in some multi-party settings. The main tools we use are reductions to existing linear algebra verification protocols and a new protocol to verify that a given vector is in the F[x]-row space of a given matrix.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal-unilim.archives-ouvertes.fr/hal-01829139
Contributeur : Vincent Neiger Connectez-vous pour contacter le contributeur
Soumis le : mercredi 11 décembre 2019 - 11:16:35
Dernière modification le : dimanche 26 juin 2022 - 02:44:39
Archivage à long terme le : : jeudi 12 mars 2020 - 17:34:32

Fichier

polynomial_matrix_certificates...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

David Lucas, Vincent Neiger, Clément Pernet, Daniel Barry Roche, Johan Rosenkilde. Verification Protocols with Sub-Linear Communication for Polynomial Matrix Operations. Journal of Symbolic Computation, Elsevier, 2021, 105, pp.165--198. ⟨10.1016/j.jsc.2020.06.006⟩. ⟨hal-01829139v2⟩

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

286