
https://hal-unilim.archives-ouvertes.fr/hal-01937929
https://hal.archives-ouvertes.fr


Bank insolvency risk and Z-score measures: caveats
and best practice

Vincent Bouvatier� Laetitia Lepetity

Pierre-Nicolas Rehaultz Frank Strobelx

July 18, 2018

Abstract

We highlight caveats arising in the application of traditional ROA-based Z-scores for the
measurement of bank insolvency risk, develop alternative Z-score measures to resolve these is-
sues, and make recommendations for best practice for the US/Europe based on the experience
of the Önancial crisis of 2007-2008. Using a probabilistic approach (i) our novel regulatory
capital Z-score dominates traditional Z-score measures for both US/Europe; (ii) Z-scores com-
puted with exponentially weighted moments dominate those with moving moments for the
US sample, but not for Europe. For both US/Europe, using a multivariate logit approach (i)
allows computation of augmented Z-scores that provide probabilities of distress that better
discriminate between distressed/surviving banks than the probabilistic approach; (ii) suggests
that the ROA-based Z-score using current values of the capital-asset ratio is best, calculated
either with moving or exponentially weighted moments.
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1 Introduction

The Z-score is widely used in the empirical banking literature to reáect a bankís probability of
insolvency; it is, e.g., one of the indicators used by the World Bank in their Global Financial
Development Database to measure Önancial institutionsí soundness.1 The widespread use of Z-
scores can be explained by their relative simplicity and the fact that they require only accounting
information for their computation; as such, they can be applied to both listed and unlisted Önancial
institutions. However, both their simplicity and reliance on accounting data result in potential
challenges in their application; our paper highlights these caveats, develops alternative Z-score
measures to address these issues, and then proceeds to develop recommendations regarding best
practice in the application of Z-score measures for the measurement of bank insolvency risk, based
on the experience of the Önancial crisis of 2007-2008 for the US and Europe.

The traditional return-based Z-scores commonly used at present, designed as an indicator for the
likelihood that a bankís equity might be wiped out through losses, are faced with several potential
challenges in their practical application; we consider improvements for each of these issues. First,
return-based Z-score measures disregard the importance of regulatory capital constraints faced by
banks; we take this aspect into account by constructing an alternative "regulatory capital" Z-score
as an indicator for the likelihood that a bankís regulatory capital drops below a given threshold.
Secondly, the construction of time-varying Z-score measures more generally introduces questions of
appropriate estimation of relevant moments (see e.g. the survey by Lepetit and Strobel (2013)); in
addition to a thorough evaluation of alternative approaches to using moving moments we also con-
sider exponentially weighted moments in this paper. Lastly, while the return-based and regulatory
capital Z-score measures can be related to unconditional probabilities of distress, the link between
Z-scores and probability of distress could be conditional on observable bank characteristics (e.g.
bank size) and the macroeconomic environment (i.e. a reduction in capital might be more challeng-
ing for a bank during a Önancial crisis period than during normal times). We address this issue by
constructing a multivariate logit model which allows for heterogeneity in the relationship between
the Z-score and the probability of distress, allowing an improved assessment of the probability of
distress of banks and the construction of an "augmented" Z-score formula for out-of-sample use.

We compare the performance of these di¤erent Z-score measures to determine the best Z-score(s)
to use in practice. We pursue comparisons drawing on a range of alternative testing procedures,
Örst at a probabilistic level, where our Z-score measures can be related to predicted probabilities
of distress using sound statistical foundations. We then progress to a multivariate logit model in

1For some recent papers using this methodology, see e.g. Caiazza et al. (2018), Pino and Sharma (2018), Tsionas
and Mamatzakis (2017), Berger et al. (2016), Fukuyama and Matousek (2017), Han et al. (2016), Doumpos et al.
(2015), Vazquez and Federico (2015), Hakenes et al. (2015), Berger et al. (2014), Delis et al. (2014), Fang et al.
(2014), Fu et al. (2014), Beck et al. (2013), Bertay et al. (2013), DeYoung and Torna (2013).
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order to link the Z-score to the probability of distress, which allows us to include key observable
characteristics at the bank level as well as changes in economic conditions. This parametric econo-
metric model approach allows additional testing procedures to assess the probabilities of distress
and evaluate the di¤erent Z-score measures used. We then Önally compare the multivariate logit
and probabilistic approaches in order to determine if there is a "best" Z-score measure to use in
empirical analysis.

We exploit for our empirical analysis the substantial number of banks that became distressed
during the Önancial crisis of 2007-2008, predominantly in the US and Europe, which will allow us to
compare and evaluate the di¤erent approaches to the construction of Z-score measures developed.

Our results Örstly show that our novel regulatory capital Z-score, which we introduce to reáect
the relevance of regulatory capital constraints faced by banks, dominates the two versions of tra-
ditional return-based Z-score measures we examine for the majority of the test criteria used in our
probabilistic approach, for both the US and European samples. Focussing next on how best to
allow for time-variation in Z-score measures, our analysis using the probabilistic approach shows
that Z-scores computed with exponentially weighted moments are better than those with moving
moments for the US sample, but do not present a clear advantage for the European one. We fur-
ther demonstrate in this context that moving moment Z-score measures based on 3-year windows
outperform Z-scores using 5-year windows for both the US and Europe. Moving on to the multi-
variate logit approach, including selected observable characteristics at the bank level and changes in
economic conditions allows us to compute augmented Z-scores that provide probabilities of distress
that better discriminate between distressed and surviving banks than the probabilistic approach,
for both the US and European samples. Using the multivariate logit approach, our results suggest
that the best Z-score to use, in both the US and Europe, is the ROA-based Z-score using current
values of the capital-asset ratio, calculated either with moving or exponentially weighted moments.

The remainder of the paper is organized as follows: Section 2 presents the traditional and
regulatory Z-score measures considered, links them to predicted probabilities of distress and presents
the data; Section 3 tests the relative performance of the di¤erent Z-scores using the probabilistic
approach; Section 4 develops a parametric econometric model to assess probabilities of distress
and applies it to evaluating the di¤erent Z-score measures; Section 5 compares the performance
of the parametric econometric model approach with that of the probabilistic one, and develops an
augmented Z-score formula for out-of-sample use; Önally, Section 6 concludes the paper.
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2 Z-score measures and data

2.1 Z-score deÖnitions

2.1.1 Traditional ROA-based Z-score

Let us Örst restate the traditional justiÖcation for using Z-scores as a risk measure reáecting a bankís
probability of insolvency. For these purposes, bank insolvency is commonly deÖned as a state where
(CAR + ROA) � 0, with CAR the bankís capital-asset ratio and ROA its return on assets. Lepetit
and Strobel (2015) showed that if ROA is a random variable with Önite mean �ROA and variance
�2

ROA, the one-sided Chebyshev inequality gives an upper bound of the probability of insolvency as
a nonlinear function of the Z-score Z � (CAR + �ROA) =�ROA > 0 as follows

P(ROA � �CAR) �
�
1 + Z2��1 < 1

In this sense, a high Z-score can thus be argued to correspond to a low probability of insolvency.

2.1.2 A new "regulatory" Z-score

We develop a new "regulatory" Z-score that is based on a bankís regulatory rather than standard
capital-asset ratio. In analogy to the deÖnition of bank distress in Section 2.1.1, one could argue
that a bank is in "regulatory" distress when a particular regulatory capital ratio RCAR drops
below a given regulatory threshold TR, so that, e.g., its total capital ratio drops below 8% or its
Common Equity Tier 1 ratio drops below 4.5% (under Basel III). This then allows us to relate a
"regulatory capital" Z-score, deÖned as ZRCAP � (�RCAR � TR) =�RCAR, to an upper bound of the
(unconditional) probability of regulatory distress, as follows

Proposition 1 If the regulatory capital ratio RCAR is a random variable with Önite mean �RCAR >
TR and variance �2

RCAR > 0, an upper bound of the bankís probability of not satisfying the regulatory
threshold tr is given by P(RCAR � TR) � (1 + Z2

RCAP )�1 < 1, where the "regulatory capital" Z-
score is deÖned as ZRCAP � (�RCAR � TR) =�RCAR > 0.

Proof. See Appendix A.

2.1.3 Time-variation - moving moments

The time-varying implementation of the two Z-score measures introduced above can be carried out in
di¤erent ways; common approaches to this, for the traditional Z-score, are discussed in Lepetit and
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Strobel (2013).2 In common with the empirical literature to date, we Örst calculate "rolling" versions
of the Z-scores. For this we initially consider the most commonly used 3-year rolling windows for the
calculation of moving moments. For the traditional Z-score, we calculate two alternative versions:
(i) the "moving capital" Z-score Zr3, using moving mean and standard deviation estimates for both
ROA and CAR, with window widths of three observations; and (ii) the "current capital" Z-score
Zr3;c, using moving mean and standard deviation estimates for ROA, with window widths of three
observations, and combining these with current values of CAR. For the regulatory capital Z-score,
we calculate Zr3

RCAP using moving mean and standard deviation estimates for the total capital ratio
(TCR), with window widths of three observations, and a regulatory threshold of 8%. Alternatively,
we also consider equivalently constructed Z-scores Zr5, Zr5;c and Zr5

RCAP that use 5-year rolling
windows for the calculation of moving moments instead.

2.1.4 Time-variation - exponentially weighted moments

We then go further than the existing literature by also implementing exponentially weighted mo-
ments in the construction of alternative time-varying Z-scores; exponentially weighted moments
have the advantage of always drawing on the full data history available, while weighting more re-
cent observations more heavily. We thus construct the "exponential capital" Z-score Zexp, using
exponential mean and standard deviation estimates for both ROA and CAR , the "current capital"
Z-score Zexp;c, using exponential mean and standard deviation estimates for ROA combined with
current values of CAR, and the regulatory capital Z-score Zexp

RCAP , using exponential mean and
standard deviation estimates for the total capital ratio (TCR). For each of our relevant variables,
the exponentially weighted moving average EWMA, and exponentially weighted moving variance
EWVAR, are calculated recursively as3

mean: EWMAt (x) = �xt + (1 � �)EWMAt�1 (x)

variance: EWVARt (x) = (1 � �)(EWVARt�1 (x) + �(xt � EWMAt�1 (x))2)

where the recursion for the (naive) exponentially weighted variance follows Finch (2009) and West
(1979). We determine the smoothing parameter � optimally, carrying out a grid search over the
range 0.01 to 0.99 with increments of 0.01. This produces 99 competing exponential Z-score can-

2Lepetit and Strobel (2013) further examine, for commercial, cooperative and savings banks in G20 countries from
1992ñ2009, which of the various mean and standard deviation estimates commonly used in the literature to compute
traditional time-varying Z-score measures "best Öt the data", which, however, is only interpreted narrowly in the
sense of producing minimum one-period-ahead forecast errors regarding the relevant moments. As a consequence, in
contrast to our present paper, their assessment does not extend to examining the relative performance of di¤erent
time-varying Z-score measures in relation to actual, observed instances of bank distress.

3Stata code implementing these exponentially weighted moments and associated Z-score measures is available
from the corresponding author on request.
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didates; amongst those, the one maximizing the AUROC curve is then chosen (see Section 3.1 for
details of our testing procedure). For our sample (described in Section 2.2), determining the opti-
mal smoothing parameter � optimally for CAR shows consistently that current values of CAR are
best; hence we consider only the exponentially weighted Z-scores Zexp;c and Zexp

RCAP throughout the
paper.

2.2 Bank distress and sample construction

In order to determine which one of the di¤erent Z-score measures introduced in Section 2.1 is
best, we focus on the Önancial crisis of 2007-2008. A good Z-score measure should allow us to
discriminate between banks that survived the Önancial crisis and banks that fell into distress during
it. Using annual Önancial statement data for US commercial banks drawn from SNL Financial
LC, and European commercial, savings and cooperative ones extracted from BvD BankScope,4 we
consider for our empirical investigation banks existing in 2006 and still operating in 2014, and banks
existing in 2006 but falling into distress between 2007 and 2014. Thus, we exclude non-distressed
banks existing in 2006 but disappearing between 2007 and 2014 due to mergers & acquisitions, and
all banks created between 2007 and 2014.

We classify a bank as distressed for the US and Europe, respectively if: (i) it failed according to
the FDIC or ECB; or (ii) it asked for Troubled Asset Relief Program (TARP) funds for the US, or
represents a "rescued bank" following Molyneux et al. (2014) and Fratianni and Marchionne (2013)
for Europe; or (iii) it was "weakly" capitalized and was subsequently acquired by a safer bank. We
consider a bank as weakly capitalized if the tangible common equity/tangible assets ratio is lower
than 2%, or the Tier 1 capital ratio is lower than 4%, or the total capital ratio is lower than 8%.
When a bank is classiÖed as distressed during a given year, it is dropped from the sample in the
following and all subsequent years.

Our initial US sample consists of 5931 commercial banks; amongst those, 545 fell into distress
between 2007 and 2014. Dropping banks with a net loans to total assets ratio lower than 5%, we
retain a Önal US sample allowing us to calculate 3-year rolling Z-score measures of 5823 banks, of
which 543 fell into distress between 2007 and 2014. The initial European sample, on the other hand,
has 3073 commercial, savings and cooperative banks; 157 of these fell into distress in the period
considered. When we similarly drop banks with a net loans to total assets ratio lower than 5%,
we obtain a Önal sample allowing us to calculate 3-year rolling Z-score measures of 2866 European
banks, of which 142 became distressed between 2007 and 2014. Not all European banks publish
their total capital ratio, reducing the sample that can be used to examine the regulatory Z-score to

4Our European sample consists of Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Data coverage
of European banks in SNL is limited in both number of banks and years of data available.
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2138 banks, of which only 60 fell into distress; this unavailability of total capital ratios is consistent
across BvD BankScope, SNL, Bloomberg as well as annual reports. Table 1 provides summary
statistics for both our US and European samples. As expected, the unconditional probability of
distress shows considerable áuctuation, and is naturally highest in 2008ñ2010.

As regards the construction of the time-varying Z-score measures we consider, those using rolling
windows are calculated with the window widths considered from 2007 onwards. The Z-scores using
exponentially weighted moments are similarly constructed from 2007 onwards, but draw on the
maximum amount of historical data available for each bank in our sample; the earliest usable
observations are in 1990 and 1999 for the US and European samples, respectively. Table B1 (in
Appendix B) presents summary statistics for the main Z-score measures computed for our samples
of distressed and non-distressed banks. As expected, Z-score measures of distressed banks are
signiÖcantly lower than those of non-distressed banks. Table B2 further gives correlation matrices
for the main Z-score measures. We observe that the regulatory capital Z-score is only weakly
correlated with the total capital ratio (TCR), suggesting that it may indeed be of interest to
consider our novel regulatory capital Z-score as a measure of default risk, rather than simply the
TCR itself.

3 Comparing predicted probabilities of bank distress to ac-
tual bank distress

The di¤erent Z-scores developed in Section 2.1 can be considered as rival binary classiÖers, with
each classiÖer providing predicted probabilities that banks become distressed. These predicted
probabilities can then be compared to observed discrete outcomes of distressed banks, in order to
evaluate the di¤erent approaches to constructing Z-score measures, using the techniques outlined
in the following section. In order to retain observations with negative Z-scores in the calculation of
predicted probabilities, negative Z-scores are rescaled to lie between zero and the minimum observed
Z-score in the sample. This is necessary as negative Z-scores do not Öt into the probabilistic
framework drawn on in Section 2.1, where a Z-score of zero already corresponds to a probability
of insolvency of 100%; however, negative Z-scores can nevertheless occur when calculated based on
actual accounting data when a bank is in fact in distress.

3.1 Testing procedure

Various criteria have been developed to compare formulas that predict the probabilities of having
observed a positive outcome (Yi;t = 1) of a corresponding binary response (Yi;t = f0; 1g). Here,
we consider several complementary criteria: three criteria that focus on the relative ranking of the
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predicted probabilities provided by each classiÖer (AUROC curve, AUPR curve and H measure);
and a criterion that takes into account the numerical values of the predicted probabilities (Tjur
R2). The latter three are not commonly applied in economics/Önance, but more widely used in
di¤erent scientiÖc disciplines such as biostatistics and machine learning (e.g. Hand (2012), Saito
and Rehmsmeier (2015)).

The Örst category of criteria are deÖned and computed from the confusion matrix (Hand (2012)).5

We Örst consider the area under the receiver operating characteristic (AUROC) curve. The receiver
operating characteristic (ROC) curve plots the true positive rate against the false positive rate
at various threshold settings. Therefore, the area under the ROC curve, considering all possible
thresholds, has the attractive property of providing a summary measure of classiÖcation ability. In
addition, the AUROC curve has an intuitive interpretation: it equals the concordance probability
(also called the c�index) that is equivalent to the probability that a randomly chosen positive
outcome is ranked higher than a randomly chosen negative outcome. Realistic values for the AUROC
curve range thus from 0.5 (random ranking) to 1 (perfect ranking).

The AUROC curve is a widely used measure of classiÖer performance, but can be a misleading
indicator when positive outcomes are sparse in the dataset (i.e. for imbalanced datasets). This issue
is related to the fact that the ROC curve reports the false positive rate on the x-axis, calculated
as the ratio of false positives to overall negatives (i.e. false positives and true negatives). When
positive outcomes are sparse, it becomes easier to predict negative outcomes and, consequently,
true negatives are much more numerous than false positives (i.e. the false positive rate is generally
weak). Therefore, if we care more about the positive outcomes, the AUROC curve can overstate
the overall performance of the classiÖer. The area under the precision-recall (AUPR) curve can
be considered as a more appropriate evaluation metric in such situations (Saito and Rehmsmeier
(2015)). The precision-recall (PR) curve plots precision against recall at various threshold settings,
where precision is deÖned as the ratio of true positives to overall positives, and recall is a synonym
for the true positive rate. As a consequence, the PR curve and the ROC curve both use the true
positive rate, but the PR curve considers precision instead of the false positive rate. In other words,
in contrast to the ROC curve, the PR curve does not consider the true negatives; this gives a more
informative picture of the performance of the classiÖer in an imbalanced dataset. However, the
AUPR curve does not have an intuitive interpretation, unlike the AUROC curve.

A more fundamental criticism has been expressed towards the AUROC curve by Hand (2009,
2010). Considering optimal thresholds, these papers demonstrate that optimising the AUROC

5The confusion matrix reports the number of false positives (FP), false negatives (FN), true positives (TP),
and true negatives (TN) for a given threshold. For instance, for a given threshold t 2 [0; 1], the number of positive
outcomes with predicted probabilities higher than t gives the TP. Regarding the criteria computed from the confusion
matrix, some simpler Öt statistics like accuracy (i.e., (T P +T N)=(F P +T P +F N+T N)) require specifying a particular
threshold, while some more complex measures provide an average performance covering all possible thresholds.
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curve is equivalent to minimising expected minimum loss (resulting from misclassiÖcation costs),
showing that the latter depends on the score densities, and hence on the classiÖer. Therefore, the
interpretation of the AUROC curve is argued to be model-speciÖc, leading to the conclusion that
the AUROC curve is not a coherent measure to compare rival classiÖers. Hand (2009) proposes
the H measure, which is not classiÖer-dependent, as a coherent alternative to the AUROC curve.6

However, Flach et al. (2011) challenges the argument developed by Hand (2009, 2010), contending
that considering only optimal thresholds is over-optimistic from a practical perspective. When all
scores that have been assigned to data points are considered as possible thresholds, the AUROC
curve is arguably not model-speciÖc, and thus would remain a coherent measure of classiÖcation
performance.

The AUROC curve, AUPR curve and H measure focus only on the relative ranking of the
predicted probabilities. However, the numerical values of the predicted probabilities can also be
considered as meaningful. As a result, we use an additional criterion in order to also measure
the accuracy of the predicted probabilities, the Tjur (2009) R2, which is deÖned as the di¤erence
between the mean of the predicted probabilities of positive outcomes and the mean of the predicted
probabilities of negative outcomes.

Adopting an agnostic approach as to which of these criteria might be best suited for our pur-
poses, we apply all four criteria to empirically compare the performance of the di¤erent Z-scores as
classiÖers providing predicted probabilities that banks become distressed. A "best" Z-score would
ideally present the highest values for the AUROC curve, the AUPR curve, the H measure and the
Tjur R2. As these criteria assess di¤erent aspects of performance, it is, however, unclear whether
one should expect one of the alternative Z-score measures to dominate all others for the entire set of
criteria. Therefore, we simply aim to identify a hierarchy in which a subgroup of Z-score measures
is dominated on average by other more e¢ cient ones.

3.2 Results

Our test results are reported in Table 2, with testing carried out separately for the US and European
samples (see Panels A and B, respectively). Testing by region is done, Örstly, due to the signiÖcant
di¤erence in sample size, and secondly to allow us to examine whether results di¤er between the
US and European samples.

We Örst evaluate the performance of the di¤erent Z-scores when calculated using moving mo-
ments, using 3-year windows. The two traditional, widely used ROA-based Z-scores, Zr3;c and Zr3,
computed with either current values or moving mean of the capital-asset ratio, are compared with
our novel regulatory capital Z-score Zr3

RCAP . We observe throughout that our results are quali-
6Flach et al. (2011) show that the H measure is actually a variation of the area under the cost curve developed

by Drummond and Holte (2006).
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tatively similar for the US and European samples. The regulatory capital Z-score dominates the
two traditional ROA-based Z-scores for all test criteria but the AUPR curve for both the US and
the European sample. When choosing more narrowly only between the two traditional ROA-based
Z-scores, the one computed with current values of the capital-asset ratio (Zr3;c) is strictly preferable
throughout.

We next investigate whether time-varying Z-scores computed using exponentially weighted mo-
ments perform better than those using simple moving moments. Results in Table 2 indicate that, for
the US sample, exponentially weighted Z-scores dominate corresponding moving moments Z-scores
using 3-year windows for all criteria, with the only exception of the AUROC curve for the regu-
latory Z-score. Test results are, however, less clear-cut as to whether the exponentially weighted
"current capital" Z-score (Zexp;c) or the exponentially weighted regulatory capital Z-score (Zexp

RCAP )
are best, with each performing well for certain criteria in the US sample. For the European sample,
on the other hand, exponentially weighted Z-scores do not outperform their corresponding moving
moments Z-scores based on all criteria but the Tjur R2.

Additionally, we carried out equivalent comparisons using Z-scores based on moving moments
using 5-year windows instead of the more common 3-year ones; this, however, marginally reduces the
number of usable observations. We Önd that Z-score measures based on 3-year windows outperform
the Z-scores using 5-year windows for all the criteria we use to compare their performance, for both
the US and Europe (see Table B3 in Appendix B).

Overall, our analysis suggests that for US data, it is better to use Z-scores computed with
exponentially weighted moments rather than those with moving moments, and that the two best
Z-scores to use are the exponentially weighted regulatory capital Z-score and the exponentially
weighted "current capital" Z-score. If only simple moving moments are applied, however, it is
better to use the regulatory capital Z-score than traditional Z-scores for US data, using 3-year
windows. The latter recommendation also applies to European data; however in this case using
exponentially weighted moments furthermore does not o¤er any relevant signiÖcant advantages,
with the moving moment regulatory capital Z-score, using 3-year windows, remaining best overall.
This result notwithstanding, as the required regulatory data is much less available for European
banks it may be preferable to use the moving moment "current capital" Z-score instead.

Whereas our analysis allows the comparison of these di¤erent Z-scores measures, drawing on
the predicted probabilities that banks become distressed they imply, it does not o¤er guidance for
what particular transformation of those Z-score measures is the most appropriate to use in applied
empirical work. As Lepetit and Strobel (2015) emphasize, log-transformed Z-scores may be more
appropriate in applied work due to the skewness of Z-scores in levels; the log of the Z-score can
additionally be shown to be negatively proportional to the log odds of insolvency, giving it a sound
probabilistic foundation. However, a practical inconvenience of log-transformed Z-scores is the
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fact that calculated Z-scores can be negative by construction. This issue could be resolved either
through appropriate rescaling of negative Z-scores into the positive domain (as detailed above),
or by resorting to alternative transformations such as the log-modulus transformation, which we
introduce in the following section.

Next, we move beyond the probabilistic approach to the evaluation of di¤erent Z-score measures
that links the Z-score to the probability of bank distress, and introduce an alternative approach
based on a parametric econometric model.

4 A multivariate logit model for the probability of bank
distress

We now develop a multivariate logit model to link the Z-score to the probability of distress, allowing
us to include selected control variables in the speciÖcation that represent key observable characteris-
tics at the bank level as well as changes in economic conditions. This parametric econometric model
then allows us to apply an alternative range of statistical tests to further assess the di¤erent Z-score
measures introduced in Section 2.1 in relation to their ability to predict bank insolvency/distress.

4.1 Econometric model speciÖcation

The baseline model for the multivariate-model approach corresponds to a pooled logit speciÖcation
given by �

P
�
Yi;t = 1 p ZK

i;t; Xi;t
�

= �
�

ZK

i;t; Xi;t�
�

P
�
Yi;t = 0 p ZK

i;t; Xi;t
�

= 1 � �
�

ZK

i;t; Zi;t�
� (1)

where the subscripts refer to bank i (i = 1; :::; N) in period t (t = 1; :::; T ). The variable Yi;t is a
binary variable that is equal to 1 if the bank falls into distress and 0 otherwise, ZK

i;t is a Z-score
measure of type K, Xi;t is a set of control variables, 
 is a parameter estimate and � a vector of
parameter estimates. The cumulative density function � (:) is given by

�
�

ZK

i;t; Zi;t�
�

=
1

1 + exp
�
�
ZK

i;t � Xi;t� � c
� (2)

where c is the intercept. The multivariate logit model allows us to compute alternative augmented
(model-based) probabilities of distress, denoted P

�
ZK

i;t; Xi;t
�
.

The control variables (Xi;t) take into account selected observable characteristics at the bank
level and changes in economic conditions. We select bank-level control variables that are publicly
available and provided by most, if not all, banks to ascertain that they can be used universally.
We Örstly control for bank size by including the log of total assets (Sizei;t), but also examine
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additional inclusion of the square of the log of total assets ((Sizei;t)2). Economies of scale and
scope in information production might imply that larger banks should be less prone to falling into
distress and be more e¢ cient than smaller ones (e.g. Diamond (1984), Williamson (1986), and
Boyd and Prescott (1986)). On the other hand, large banks might also have incentives to pursue
higher asset risk relative to smaller banks in response to "too-big-to-fail" subsidies and government
bailouts (e.g. Farhi and Tirole (2012)). We additionally take into account if a bank is subject to
market scrutiny by including the dummy variable Listedi;t equal to 1 if bank i is listed on a public
stock market, and 0 otherwise. Market discipline has the potential to curb incentives for excessive
risk taking, by rendering risk-taking more costly (Kwan (2004), Nier and Baumann (2006)). Lastly,
we include the VIX (V IXt) to account for changes in economic conditions; this is preferred to time
dummies, as those would not be appropriate for out-of-sample use of the estimates.

The Z-score measure (ZK
i;t) used here is the log-modulus transformation (John and Draper (1980))

of the Z-score variable ZK
i;t deÖned as

ZK
i;t = sign

�
ZK

i;t
�

: ln
���ZK

i;t

�� + 1
�

where sign
�
ZK

i;t
�

is equal to -1 if the variable ZK
i;t is negative and 1 otherwise. The log-modulus

transformation allows us to both handle the skewedness of the distribution of the Z-score and
the potential negative values taken by the Z-score when returns are negative and equity drops to
su¢ ciently low levels. The latter aspect may be particularly relevant in studies like ours dealing
speciÖcally with bank distress, as it would lead to exclusion of such observations, or require some
rescaling, when applying a simple log-transformation.

4.2 Testing procedure

The comparison of di¤erent Z-score measures (for a given model speciÖcation) is equivalent to the
comparison of non-nested logit models. For this we rely on the Vuong (1989) test and the Clarke
(2003) test. These two procedures focus on the relative strength of two rival models and exploit
the di¤erences in the log-likelihoods of two competing models. The non-nested tests are more
appropriate than familiar model selection criteria such as the McFadden R2 or the AIC and BIC
criteria because non-nested tests provide probabilistic statements regarding model selection. In
addition, the non-nested tests include information from the rival model in the selection procedure,
unlike the common model selection criteria.

More speciÖcally, Vuong (1989) proposes a procedure to discriminate between two rival models.
He puts forward that the Örst model should be selected over the second model if the average log-
likelihood of the Örst model is signiÖcantly greater than the average log-likelihood of the second
model, and conversely. Thus, the Vuong test uses the average di¤erence in the log-likelihoods of two
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competing speciÖcations. The null hypothesis is that the average di¤erence is zero, suggesting that
the two rival models are equally close to the true model. The test statistic, based on an appropriate
normalization of the estimated average di¤erence, is normally distributed under the null hypothesis.
Furthermore, when the null hypothesis is rejected, the Örst model should be selected if the test
statistic is positive, while the second model should be selected if the test statistic is negative.

Additionally, Clarke (2003) shows that some conditions a¤ect the performance of the Vuong
test. In particular, a small sample size, a strong canonical correlation between the sets of covariates
in the two rival models and the presence of outliers in the (individual) log-likelihood ratios reduce
the performance of the Vuong test. Clarke (2003) proposes a more robust selection procedure in
such conditions. The Clarke test, also called the distribution-free test, is based on the median
di¤erence in the log-likelihoods of two competing speciÖcations. The null hypothesis is that the two
speciÖcations are equally close to the true model. Therefore, under the null hypothesis, half of the
di¤erences of the log-likelihoods should be greater than zero. The number of positive di¤erences is
used to compute the test statistic that is distributed binomial (n; 0:5), where n is the number of
observations.7 Furthermore, when the null hypothesis is rejected, the number of positive di¤erences
is signiÖcantly di¤erent from 0.5, suggesting that the median log-likelihood ratio is statistically
di¤erent from zero. A number of positive di¤erences signiÖcantly larger than 0.5 means that the
Örst model should be selected, whereas a number of positive di¤erences signiÖcantly lower than 0.5
means that the second model should be selected.

Finally, we also rely on the AUROC curve which is reliable for assessing whether one of the
Z-score measures performs better for the detection of distressed banks. More precisely, we consider
the statistical test proposed by DeLong et al. (1988) to compare two AUROC curves.

4.3 Results

Tables 3 and 4 present the results of the multivariate logit regressions for the Z-scores we introduced
in Section 2.1, for the US and European sample, respectively.

For the European sample, the square of the log of total assets ((Sizei;t)2) is not signiÖcant
throughout, hence we resort to a speciÖcation only including the log of total assets (Sizei;t) in
this case (see Table 4). This is plausibly due to the fact that our sample of distressed banks in
Europe is dominated by large banks, contrary to the US sample. Furthermore, as inclusion of
the regulatory capital Z-score Zr3

RCAP when carrying out the tests outlined in Section 4.2 would
dramatically reduce the size of the available European sample (as discussed above), we focus only
on ROA-based Z-scores when examining the European sample.

7The competing speciÖcations we consider have the same number of coe¢ cients; hence, we do not need to rely on
a correction for the degrees of freedom.
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Our main results show that the addition of control variables in the four multivariate models
we consider results in a statistically signiÖcant improvement in model Öt, obtaining higher Log-
Likelihoods than with univariate models, with large LR test statistics associated with very low
p-values. The di¤erent multivariate models also have larger McFadden R2 and lower values for AIC
and BIC compared to the univariate versions.

Using the multivariate logit approach, we then re-examine the performance of the di¤erent Z-
score measures introduced in Section 2.1, with results presented in Tables 5 and 6, for the US and
Europe, respectively. We observe for both the US and Europe that the "current capital" Z-score
Zr3;c dominates the "moving capital" Z-score Zr3 throughout in the multivariate context. Similarly,
again for both the US and European samples, while the exponentially weighted "current capital"
Z-score (Zexp;c) strictly dominates the "moving capital" Z-score Zr3 in the multivariate context,
its performance relative to the "current capital" Z-score Zr3;c is far from conclusive. As far as the
regulatory capital Z-scores Zr3

RCAP and Zexp
RCAP are concerned for the US sample, both are strictly

dominated by the "current capital" Z-score Zr3;c in the multivariate context.
Overall, our results for both the US and European samples suggest that in a multivariate context,

which also takes into account selected observable characteristics at the bank level and changes
in economic conditions, the "current capital" Z-score Zr3;c and exponentially weighted "current
capital" Z-score (Zexp;c) jointly outperform all other considered Z-score measures, without however
a clear "winner" between the two of them.

In the next section, we compare the probabilistic approach linking the Z-score to the probability
of bank distress, as discussed in Section 3, with the alternative approach based on a multivariate logit
model developed here, allowing us to develop an "augmented" Z-score measure as a consequence.

5 Towards an augmented Z-score

We Örst compare the performance of the multivariate logit approach with that of the probabilistic
one, using the same criteria as in Section 3.2 (AUROC curve, AUPR curve, H statistic and Tjur
R2). The results displayed in Table 7, for both the US and European sample, show that the
multivariate logit approach outperforms the probabilistic approach for three of the four criteria
considered (AUROC curve, AUPR curve and H measure). The fact that the probabilistic approach
seemingly outperforms the multivariate model approach according to the Tjur R2 should be treated
with caution, as it is mainly driven by the properties of the link functions between the Z-score
measure and the probability of distress.8 The dominant performance of the multivariate logit

8Note that the probability of distress increases faster with decreasing Z-scores with the link function used in
the probabilistic approach than with the one used in the model-based approach (see Figure C1 in the Appendix).
As a result, if a given Z-score performs well in discriminating between distressed and surviving banks, the mean
of the predicted probabilities of positive outcomes will be higher under the probabilistic approach than the model-
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approach shows that the inclusion of selected observable characteristics at the bank level and changes
in economic conditions can give more accurate probabilities of distress to discriminate between
distressed banks and survivor banks.

In terms of practical application, we can draw on these results by constructing a formula deÖning
an "augmented" Z-score that can be used in out-of-sample applications, as an alternative to the
"unconditional" Z-score commonly used in empirical work in the banking and Önancial stability
related literature. Formally, our multivariate model framework allows the computation of a formula
for an augmented Z-score measure ẐK

i;t , deÖned as

ẐK
i;t = �
̂ZK

i;t � Xi;t�̂

For the best Z-score measure we identiÖed in the multivariate model approach, i.e. the ROA-
based Z-score using current values of the capital-asset ratio, we can retrieve the relevant estimated
parameters 
̂ and �̂ from Tables 3 and 4. The corresponding augmented ROA-based Z-score measure
Zr3;c

i;t , computed using 3-year rolling windows (for simplicity) and current values of the capital-asset
ratio, can then be given as

for the US: Ẑr3;c
i;t = 1:6181Zr3;c

i;t � 0:4014Listedi;t � 1:1543Sizei;t + 0:0432 (Sizei;t)2 � 0:1178V IXt

for Europe: Ẑr3;c
i;t = 1:1306Zr3;c

i;t � 0:6654Listedi;t � 0:2603Sizei;t � 0:0585V IXt

where: Zr3;c
i;t = sign

�
Zr3;c

i;t
�

: ln
���Zr3;c

i;t

�� + 1
�

(3)

The associated probability of distress for this augmented Z-score is given by the respective logit
functions [1 + exp(Ẑr3;c

i;t + 11:1360)]�1 for the US, and [1 + exp(Ẑr3;c
i;t + 4:7536)]�1 for Europe: Thus,

the estimated coe¢ cients can be used as optimal weights in an out-of-sample perspective that make
the Z-score measure conditional on economic conditions and banksíobservable characteristics, and
thereby provides an improved assessment of a bankís risk of distress.

We can use two graphical representations to illustrate the main properties of this augmented
Z-score. In Figure 1, the Z-score measure is on the horizontal axis, whereas the vertical axis gives
the probability of distress. Figure 1 shows that, for a given Z-score, the probability of distress is not
unique in the multivariate logit model as economic conditions and banksíobservable characteristics
change for each observation. In particular, Figure 1 shows that the di¤erences in the probabilities
of distress for a given Z-score can be substantial when Z-scores are low, i.e. when banks face a
greater risk of distress. Therefore, the augmented Z-score measures computed from the multivariate

based approach; hence, the Tjur R2 will conclude that the probabilistic approach outperforms the model-based
approach. This result highlights that for users that are sensitive to the numerical values of the predicted probabilities,
the probabilistic approach has the interesting feature of generating on average a large gap between the respective
predicted probabilities of distressed and surviving banks.
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logit model allow the introduction of heterogeneity in the relationship between the Z-score and
the probability of distress. This heterogeneity between banks and over time ensures an improved
assessment of the probability of distress of banks.

We can also illustrate the main advantage of the augmented Z-score measure in the time di-
mension. More precisely, we can use the multivariate logit model to construct a Z-score map that
illustrates how the relationship between the Z-score and the probability of distress is a¤ected by
changes in economic conditions over time (i.e. the VIX). Figures 2 and 3 show to what extent the
probability of distress changes when both the Z-score measure and the VIX vary. In other words,
the non-linearity of the logit model implies that the marginal e¤ect of the Z-score on the probabil-
ity of distress is conditional on the level of the control variables, including the economic conditions
proxied by the VIX. Thus, Figures 2 and 3 show, for the US and Europe, that in a high volatility
environment (i.e. VIX> 40) the probabilities of distress start to increase when the Z-score measure
goes below 5, whereas this increase only starts when the Z-score measure drops below three in a
low volatility environment (i.e. VIX< 15). In addition, the slopes of the surfaces in Figures 2 and
3 show that a decline in the Z-score measure can lead rapidly to a high probability of distress in a
high volatility environment, whereas a similar decline will not have a substantial e¤ect on the risk
of distress in a low volatility environment.

6 Conclusion

We examine traditional and alternative versions of Z-score measures, a commonly used, accounting
data based bank insolvency risk measure. After highlighting various caveats arising in the practical
application of traditional ROA-based Z-scores, we develop alternative Z-score measures that aim
to resolve these issues, and then proceed to recommendations for best practice in the application
of Z-score measures for the measurement of bank insolvency risk in the empirical banking and
Önancial stability related literature. Our empirical analysis is focussed on the Önancial crisis of
2007-2008, using annual Önancial statement data for US and European banks for the period 2006-
2014. We carry out comparisons of the di¤erent Z-score measures considered using a range of
alternative testing procedures, drawing on both a probabilistic approach as well as a multivariate
logit approach; the latter further conditions on selected observable bank characteristics and the
macroeconomic environment.

Our results demonstrate that our novel regulatory capital Z-score dominates the two versions of
traditional ROA-based Z-score measures we examine using the probabilistic approach, for both the
US and European samples. Examining how best to allow for time-variation in Z-score measures,
we Önd using the probabilistic approach that Z-scores computed with exponentially weighted mo-
ments are better than those with moving moments for the US sample, but have no clear advantage
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for the European one. Furthermore, moving moment Z-score measures based on 3-year windows
outperform Z-scores using 5-year windows for both the US and Europe. Using a multivariate logit
approach, which includes selected observable characteristics at the bank level and changes in eco-
nomic conditions, we are able to compute augmented Z-scores that provide probabilities of distress
that better discriminate between distressed and surviving banks than the probabilistic approach, for
both the US and European samples. Based on the multivariate logit approach, our results suggest
that the best Z-score to use, for both the US and Europe, is the ROA-based Z-score using current
values of the capital-asset ratio, calculated either with moving or exponentially weighted moments.
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Table 1: Sample characteristics
Panel A: USA
Year 2007 2008 2009 2010 2011 2012 2013 2014 All sample
Number of observations 5,692 5,780 5,589 5,447 5,373 5,327 5,304 5,285 43,806
Number of distressed banks 43 191 132 84 46 23 19 5 543
Percentage of distressed banks 0.76 3.30 2.36 1.54 0.86 0.43 0.36 0.09 1.24

Panel B: Europe
Year 2007 2008 2009 2010 2011 2012 2013 2014 All sample
Number of observations 2,655 2,694 2,636 2,636 2,640 2,643 2,623 2,598 21,125
Number of distressed banks 15 46 22 18 13 15 10 3 142
Percentage of distressed banks 0.56 1.71 0.83 0.68 0.49 0.57 0.38 0.12 0.67
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Table 2: Comparison of Z-score measures (probabilistic approach)
Panel A: USA

Zr3 Zr3;c Zr3
RCAP Zexp;c Zexp

RCAP

AUROC curve 0.9256 0.9376 0.9379 0.9438 0.9371
AUPR curve 0.3025 0.4250 0.2668 0.4400 0.2728
H measure 0.6341 0.6682 0.6760 0.6709 0.6867
Tjur R2 0.3171 0.5456 0.5875 0.6257 0.7418
Observations 43,806 43,806 43,806 43,806 43,806
Number of banks 5,823 5,823 5,823 5,823 5,823
Number of distressed banks 543 543 543 543 543

Panel B: Europe
Zr3 Zr3;c Zr3

RCAP Zexp;c Zexp
RCAP

AUROC curve 0.8595 0.8684 0.9151 0.8664 0.9111
AUPR curve 0.1263 0.2013 0.1746 0.1947 0.1214
H measure 0.4012 0.4336 0.6759 0.4079 0.5944
Tjur R2 0.1646 0.2277 0.4718 0.2642 0.5849
Observations 21,125 21,125 9,524 21,125 9,524
Number of banks 2,866 2,866 2,138 2,866 2,138
Number of distressed banks 142 142 60 142 60

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details): Zr3 = ROA-
based Z-score computed with moving mean of the capital-asset ratio; Zr3;c = ROA-based Z-score computed with
current values of the capital-asset ratio; Zr3

RCAP = Regulatory capital Z-score (using TCR and 8% threshold).
Z-scores computed with exponentially weighted moments: Zexp;c = ROA-based Z-score computed with current
values of the capital-asset ratio with � =0.28 for the US and 0.54 for Europe; Zexp

RCAP = Regulatory capital
Z-score (using TCR and 8% threshold) with �=0.82 for the US and 0.53 for Europe. The � parameter is
provided by a grid search and maximizes the AUROC curve in the multivariate model. Four criteria are used
to compare the performance of the di¤erent rival classiÖers (AUROC curve, AUPR curve, H measure and Tjur
R2). Best Z-scores present the highest values for the AUROC curve, the AUPR curve, the H measure and the
Tjur R2.
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Table 3: Multivariate logit models (USA)

(1) (2) (3) (4) (5)
Zr3

i;t -1.7386���
(0:0662)

Zr3;c
i;t -1.6181���

(0:0528)

Zr3
RCAP;i;t -2.3353���

(0:1177)

Zexp ;c
i;t -1.6200���

(0:0800)

Zexp
RCAP;i;t -1.2787���

(0:0615)

Listedi;t 0.4731���
(0:1352)

0.4014���
(0:1421)

0.4429���
(0:1424)

0.3613���
(0:1190)

0.3345��
(0:1299)

Sizei;t 1.1526���
(0:4778)

1.1543���
(0:4394)

0.8073��
(0:3773)

1.6876���
(0:5103)

1.3042���
(0:4085)

(Sizei;t)2 -0.0650��
(0:0189)

-0.0432��
(0:0173)

-0.0293��
(0:0140)

-0.0648���
(0:0201)

-0.0440���
(0:0153)

V IX t 0.1266���
(0:0096)

0.1178���
(0:0102)

0.1886���
(0:0123)

0.1127���
(0:0082)

0.1420���
(0:0103)

Intercept -13.0309���
(3:0375)

-11.1360���
(2:8142)

-11.4991���
(2:5573)

-14.5717���
(3:2416)

-15.1030���
(2:7231)

N obs. 43,806 43,806 43,806 43,806 43,806
N banks 5,823 5,823 5,823 5,823 5,823
N failures. 543 543 543 543 543
Log-likelihood -1700.29 -1524.30 -1703.00 -1606.13 -1726.80
LR test
[p-value]

264.40
[0.0000]

206.63
[0.0000]

492.26
[0.0000]

232.42
[0.0000]

355.86
[0.0000]

McFadden R2 0.4184 0.4786 0.4175 0.4506 0.4094
AIC 3412.59 3060.60 3418.01 3224.27 3465.61
BIC 3464.71 3112.73 3470.13 3276.40 3517.74

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details):
Zr3 = ROA-based Z-score computed with moving mean of the capital-asset ratio; Zr3;c = ROA-
based Z-score computed with current values of the capital-asset ratio; Zr3

RCAP = Regulatory capital
Z-score (using TCR and 8% threshold). Z-scores computed with exponentially weighted moments:
Zexp;c = ROA-based Z-score computed with current values of the capital-asset ratio with � =0.28;
Zexp

RCAP = Regulatory capital Z-score (using TCR and 8% threshold) with �=0.82. The � parameter
is provided by a grid search and maximizes the AUROC curve in the multivariate model. Control
variables: Listedi = 1 if bank i is listed on a public stock market, and 0 otherwise; Size = log of
total assets; V IX = the CBOE Volatility Index. ***, ** and * indicate signiÖcance respectively at
the 1%, 5% and 10% levels. Cluster (at the bank level) robust standard deviations are in brackets.
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Table 4: Multivariate logit models (Europe)

(1) (2) (3) (4) (5) (6)
Zr3

i;t -1.1247���
(0:0791)

-1.1265���
(0:0784)

Zr3;c
i;t -1.1297���

(0:0701)
-1.1306���

(0:0697)

Zexp ;c
i;t -0.6943���

(0:0455)
-0.6927���

(0:0448)

Listedi;t 0.5982��
(0:2725)

0.6041��
(0:2779)

0.5283�
(0:2744)

0.6523��
(0:2625)

0.6654��
(0:2675)

0.5937��
(0:2641)

Sizei;t 0.0138
(0:2087)

-0.0106
(0:2068)

0.0330
(0:1963)

0.2593���
(0:0387)

0.2603���
(0:0381)

0.3207���
(0:0385)

(Sizei;t)2 0.0133
(0:0115)

0.0147
(0:0114)

0.0157
(0:0110)

V IX t 0.0603���
(0:0132)

0.0572���
(0:0131)

0.0572���
(0:0134)

0.0614���
(0:0131)

0.0585���
(0:0131)

0.0588���
(0:0133)

Intercept -3.6943���
(1:0491)

-3.5908���
(1:0271)

-4.6155���
(1:0021)

-4.7485���
(0:6135)

-4.7536���
(0:5761)

-5.8613���
(0:5983)

N obs. 21,125 21,125 21,125 21,125 21,125 21,125
N banks 2,866 2,866 2,866 2,866 2,866 2,866
N failures. 142 142 142 142 142 142
Log-likelihood -623.16 -597.72 -606.83 -624.04 -598.77 -608.10
LR test
[p-value]

104.45
[0.0000]

101.11
[0.0000]

131.31
[0.0000]

102.69
[0.0000]

99.01
[0.0000]

128.76
[0.0000]

McFadden R2 0.2685 0.2983 0.2876 0.2674 0.2971 0.2861
AIC 1258.32 1207.45 1225.66 1258.08 1207.55 1226.21
BIC 1306.07 1255.20 1273.41 1297.88 1247.35 1266.00

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details):
Zr3 = ROA-based Z-score computed with moving mean of the capital-asset ratio; Zr3;c = ROA-
based Z-score computed with current values of the capital-asset ratio. Z-scores computed with
exponentially weighted moments: Zexp;c = ROA-based Z-score computed with current values of
the capital-asset ratio with � =0.54. The � parameter is provided by a grid search and maximizes
the AUROC curve in the multivariate model. Control variables: Listedi = 1 if bank i is listed on
a public stock market, and 0 otherwise; Size = log of total assets; V IX = the CBOE Volatility
Index. ***, ** and * indicate signiÖcance respectively at the 1%, 5% and 10% levels. Cluster (at
the bank level) robust standard deviations are in brackets.
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Table 5: Comparison of Z-score measures with non-nested tests (USA)

Model 2
�

Model 1 Z-score: Zr3

Log-likelihood=-1700

AUROC curve=0.9415

Z-score: Zr3;c

Log-likelihood=-1524

AUROC curve=0.9499

Z-score: Zr3
RCAP

Log-likelihood=-1703

AUROC curve=0.9514

Z-score: Zexp;c

Log-likelihood=-1606

AUROC curve=0.9532

Z-score: Zr3;c

Log-likelihood=-1524

AUROC curve=0.9499

Vuong = -12.89
[0.0000]

Clarke = 0.33
[0.0000]

Auroc = 69.38
[0.0000]

Z-score: Zr3
RCAP

Log-likelihood=-1703

AUROC curve=0.9514

Vuong = 0.08
[0.9360]

Clarke = 0.52
[0.0000]

Auroc = 5.40
[0.0201]

Vuong = 5.23
[0.0000]

Clarke = 0.54
[0.0000]

Auroc = 0.14
[0.7119]

Z-score: Zexp;c

Log-likelihood=-1606

AUROC curve=0.9532

Vuong = -4.01
[0.0000]

Clarke = 0.23
[0.0000]

Auroc = 11.35
[0.0000]

Vuong = 3.54
[0.0003]

Clarke = 0.25
[0.0000]

Auroc = 0.98
[0.3231]

Vuong = -2.71
[0.0067]

Clarke = 0.31
[0.0000]

Auroc = 0.22
[0.6362]

Z-score: Zexp
RCAP

Log-likelihood=-1726

AUROC curve=0.9479

Vuong = 0.72
[0.4730]

Clarke = 0.52
[0.0000]

Auroc = 1.56
[0.2124]

Vuong = 5.44
[0.0000]

Clarke = 0.54
[0.0000]

Auroc = 0.18
[0.6746]

Vuong = 1.23
[0.2152]

Clarke = 0.51
[0.0334]

Auroc = 1.64
[0.2006]

Vuong = 3.57
[0.0003]

Clarke = 0.68
[0.0000]

Auroc = 1.70
[0.1922]

Note: The null hypotheses of the Vuong test and the Clarke test indicate that the two Z-score measures perform
similarly. Positive and signiÖcant values for the Vuong test indicate that the Örst measure (model 1) performs
better than the second measure (model 2); and conversely for negative and signiÖcant values. Values signiÖcantly
higher than 0.5 for the Clarke test indicate that the Örst measure (model 1) performs better than the second
measure (model 2); and conversely for values signiÖcantly lower than 0.5. The null hypothesis of the AUROC test
is that the AUROC curves are equal in the two speciÖcations (model 1 and model 2).

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details): Zr3;c = ROA-
based Z-score computed with current values of the capital-asset ratio; Zr3 = Regulatory capital Z-score (using
TCR and 8% threshold). Z-scores computed with exponentially weighted moments: Zexp;c = ROA-based Z-score
computed with current values of the capital-asset ratio with � =0.28; Zexp

RCAP = Regulatory capital Z-score (using
TCR and 8% threshold) with �=0.82. The � parameter is provided by a grid search and maximizes the AUROC
curve in the multivariate model.
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Table 6: Comparison of Z-score measures with non-nested tests (Europe)

Model 2
�

Model 1 Z-score: Zr3

Log-likelihood=-624.04

AUROC curve=0.8987

Z-score: Zr3;c

Log-likelihood=-598.77

AUROC curve=0.9037

Z-score: Zr3;c

Log-likelihood=-598.77

AUROC curve=0.9037

Vuong = -3.91
[0.0001]

Clarke = 0.10
[0.0000]

Auroc = 6.44
[0.0112]

Z-score: Zexp;c

Log-likelihood=-608.10

AUROC curve=0.9179

Vuong = -2.10
[0.0356]

Clarke = 0.34
[0.0000]

Auroc = 8.22
[0.0041]

Vuong = 1.21
[0.2236]

Clarke = 0.39
[0.0000]

Auroc = 4.26
[0.0389]

Note: The null hypotheses of the Vuong test and the Clarke test indicate that the two Z-score measures perform
similarly. Positive and signiÖcant values for the Vuong test indicate that the Örst measure (model 1) performs
better than the second measure (model 2); and conversely for negative and signiÖcant values. Values signiÖcantly
higher than 0.5 for the Clarke test indicate that the Örst measure (model 1) performs better than the second
measure (model 2); and conversely for values signiÖcantly lower than 0.5. The null hypothesis of the AUROC test
is that the AUROC curves are equal in the two speciÖcations (model 1 and model 2).

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details): Zr3;c =
ROA-based Z-score computed with current values of the capital-asset ratio. Z-scores computed with exponentially
weighted moments: Zexp;c = ROA-based Z-score computed with current values of the capital-asset ratio with �
=0.54. The � parameter is provided by a grid search and maximizes the AUROC curve in the multivariate model.
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Table 7: Comparing probabilistic and multivariate logit approach using non model-based criteria
Panel A : USA

Criteria Approach Zr3 Zr3;c Zr3
RCAP Zexp;c Zexp

RCAP

AUROC curve Probabilistic 0.9256 0.9376 0.9379 0.9438 0.9371
Multivariate logit 0.9415 0.9499 0.9514 0.9532 0.9479

AUPR curve Probabilistic 0.3025 0.4250 0.2668 0.4404 0.2728
Multivariate logit 0.3657 0.4693 0.3389 0.4306 0.2890

H measure Probabilistic 0.6341 0.6682 0.6760 0.6709 0.6867
Multivariate logit 0.6657 0.6998 0.6993 0.7072 0.7124

Tjur R2 Probabilistic 0.3171 0.5456 0.5875 0.6257 0.7418
Multivariate logit 0.2248 0.3102 0.2181 0.2387 0.1870

Panel B: Europe
Criteria Approach Zr3 Zr3;c Zexp;c

AUROC curve Probabilistic 0.8595 0.8684 0.8664
Multivariate logit 0.8987 0.9037 0.9179

AUPR curve Probabilistic 0.1263 0.2013 0.1947
Multivariate logit 0.1513 0.2168 0.1572

H measure Probabilistic 0.4012 0.4336 0.4079
Multivariate logit 0.5414 0.5708 0.5705

Tjur R2 Probabilistic 0.1646 0.2277 0.2642
Multivariate logit 0.0895 0.1232 0.0925

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details):
Zr3 = ROA-based Z-score computed with moving mean of the capital-asset ratio; Zr3;c = ROA-
based Z-score computed with current values of the capital-asset ratio; Zr3

RCAP = Regulatory capital
Z-score (using TCR and 8% threshold). Z-scores computed with exponentially weighted moments:
Zexp;c = ROA-based Z-score computed with current values of the capital-asset ratio with � =0.28
for the US and 0.54 for Europe; Zexp

RCAP = Regulatory capital Z-score (using TCR and 8% threshold)
with �=0.82 for the US. The � parameter is provided by a grid search and maximizes the AUROC
curve in the multivariate model.
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Figure 1: Probabilities of distress in the multivariate logit models
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Figure 2: Z-score map : VIX, Z-score and probability of distress (USA)
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Figure 3: Z-score map : VIX, Z-score and probability of distress (Europe)
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Appendix

A Proof of Proposition 1

Proof. This is an application of the one-sided Chebyshev inequality (see Ross, 1997, p. 414, or
previously, Feller, 1971, p. 152): it states that for a random variable X with Önite mean � and
variance �2, it holds for any a > 0 that P fX � � � ag � �2

�2+a2 . Our result then follows setting
X = RCAR and a = �RCAR � TR > 0, and dividing both numerator and denominator of the right
hand side of the inequality by �2

RCAR; we observe that limZ!0 (1 + Z2)�1 = 1.

31



B Additional tables

Table B1: Descriptive statistics of Z-score measures
Panel A: USA
Z-score Banks Obs. Mean Median Std. Dev. Min Max

Zr3 Non-dist. 43263 102.39 55.03 234.25 -3.26 20785.18
Distressed 543 9.57 1.93 27.05 -5.23 354.75

Zr3;c Non-dist. 43263 102.68 55.27 236.54 -7.76 21610.53
Distressed 543 7.56 0.69 26.33 -9.18 337.75

Zr3
RCAP Non-dist. 43263 13.44 8.15 21.76 -47.45 1015.53

Distressed 543 1.18 0.56 4.30 -23.55 65.97
Zexp;c Non-dist. 43263 383.25 141.98 797.43 -1.34 36131.03

Distressed 543 14.74 0.29 80.16 -3.21 1180.86
Zexp

RCAP Non-dist. 43263 38.20 14.47 90.00 -60.69 4946.20
Distressed 543 2.06 0.00 10.85 -12.21 107.83

Panel B: Europe
Z-score Banks Obs. Mean Median Std. Dev. Min Max

Zr3 Non-dist. 20,983 286.29 73.70 812.86 -2.29 53000.73
Distressed 142 24.55 13.03 54.44 -4.59 563.63

Zr3;c Non-dist. 20,983 300.85 74.29 875.55 -3.10 57114.23
Distressed 142 23.24 11.47 56.70 -27.84 586.92

Zr3
RCAP Non-dist. 9,464 14.71 9.06 35.13 -154.06 2468.94

Distressed 60 2.30 1.01 3.98 -0.62 19.46
Zexp;c Non-dist. 20,983 9983.95 511.70 56657.41 -0.54 2719910

Distressed 142 110.63 21.16 362.92 -47.00 3978.66
Zexp

RCAP Non-dist. 9,464 42.61 9.66 661.65 -14947.13 51995.07
Distressed 60 2.46 0.30 8.74 -0.20 65.16

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details): Zr3 = ROA-
based Z-score computed with moving mean of the capital-asset ratio; Zr3;c = ROA-based Z-score computed with
current values of the capital-asset ratio; Zr3

RCAP = Regulatory capital Z-score (using TCR and 8% threshold).
Z-scores computed with exponentially weighted moments: Zexp;c = ROA-based Z-score computed with current
values of the capital-asset ratio with � =0.28 for the US and 0.54 for Europe; Zexp

RCAP = Regulatory capital
Z-score (using TCR and 8% threshold) with �=0.82 for the US and 0.53 for Europe. The � parameter is
provided by a grid search and maximizes the AUROC curve in the multivariate model. Four criteria are used
to compare the performance of the di¤erent rival classiÖers (AUROC curve, AUPR curve, H measure and Tjur
R2).
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Table B2: Correlation of Z-score measures (log transformations) and total capital ratio

Panel A: USA
Zr3 Zr3;c Zr3

RCAP Zexp;c Zexp
RCAP TCR

Zr3 1
Zr3;c 0.9938 1
Zr3

RCAP 0.4309 0.4393 1
Zexp;c 0.8257 0.8348 0.4543 1
Zexp

RCAP 0.3806 0.4070 0.7981 0.4960 1
TCR 0.2204 0.2277 0.2188 0.1838 -0.0227 1

Panel B: Europe
Zr3 Zr3;c Zr3

RCAP Zexp;c Zexp
RCAP TCR

Zr3 1
Zr3;c 0.9964 1
Zr3

RCAP 0.2435 0.2380 1
Zexp;c 0.8676 0.8731 0.2301 1
Zexp

RCAP 0.2349 0.2301 0.7999 0.2459 1
TCR 0.0231 0.0256 0.1070 -0.0231 -0.1711 1

Variable deÖnitions, Z-scores computed with 3-year rolling windows (see Section 2 for more details): Zr3 = ROA-
based Z-score computed with moving mean of the capital-asset ratio; Zr3;c = ROA-based Z-score computed with
current values of the capital-asset ratio; Zr3

RCAP = Regulatory capital Z-score (using TCR and 8% threshold).
Z-scores computed with exponentially weighted moments: Zexp;c = ROA-based Z-score computed with current
values of the capital-asset ratio with � =0.28 for the US and 0.54 for Europe; Zexp

RCAP = Regulatory capital
Z-score (using TCR and 8% threshold) with �=0.82 for the US and 0.53 for Europe. The � parameter is
provided by a grid search and maximizes the AUROC curve in the multivariate model. Four criteria are used
to compare the performance of the di¤erent rival classiÖers (AUROC curve, AUPR curve, H measure and Tjur
R2).
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Table B3: Comparison of Z-score measures (3 and 5 year rolling windows, probabilistic approach)
Panel A: USA

Zr3 Zr3;c Zr3
RCAP Zr5 Zr5;c Zr5

RCAP

AUROC curve 0.9364 0.9429 0.9377 0.9266 0.9401 0.9328
AUPR curve 0.3207 0.4479 0.2711 0.2273 0.4324 0.2217
H measure 0.6882 0.7117 0.6889 0.6416 0.6937 0.6552
Tjur R2 0.3477 0.5871 0.6140 0.1672 0.5095 0.4964
Observations 43,205 43,205 43,205 43,205 43,205 43,205
Number of banks 5,769 5,769 5,769 5,769 5,769 5,769
Number of distressed banks 489 489 489 489 489 489

Panel B: Europe
Zr3 Zr3;c Zr3

RCAP Zr5 Zr5;c Zr5
RCAP

AUROC curve 0.8653 0.8747 0.9210 0.8616 0.8748 0.9552
AUPR curve 0.1314 0.2049 0.2782 0.0950 0.1982 0.2235
H measure 0.4172 0.4528 0.7487 0.4034 0.4375 0.7215
Tjur R2 0.1700 0.2307 0.5222 0.1129 0.2052 0.4453
Observations 20,405 20,405 5,565 20,405 20,405 5,565
Number of banks 2,846 2,846 1,787 2,846 2,846 1,787
Number of distressed banks 136 136 47 136 136 47

Variable deÖnitions, Z-scores computed with n-year rolling windows (with n=3,5; see Section 2 for more details):
Zn

ROA = ROA-based Z-score computed with moving mean of the capital-asset ratio; Zn;c
ROA = ROA-based Z-

score computed with current values of the capital-asset ratio; Zn
ROE = ROE-based Z-score; Zn

RCAP = Regulatory
capital Z-score (using TCR and 8% threshold). Four criteria are used to compare the performance of the di¤erent
rival classiÖers (AUROC curve, AUPR curve, H measure and Tjur R2).
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C Properties of the link functions
Figure C1. Link function and probabilities of distress

Note: The probability of distress is given by 1/(1+Z-score2) in the probabilistic approach. The probability of distress

in the model-based approach is obtained from an univariate logit model estimated for the US sample and given by

1/(1+exp(1.6162*ln(Z-score+1)+0.3781)).
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