S. Breuils, V. Nozick, A. Sugimoto, and E. Hitzer, Quadric conformal geometric algebra of R 9, Advances in Applied Clifford Algebras, vol.28, p.35, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01767230

S. Buchholz, K. Tachibana, and E. M. Hitzer, Optimal learning rates for clifford neurons, International conference on artificial neural networks, pp.864-873, 2007.
DOI : 10.1007/978-3-540-74690-4_88

C. Doran, D. Hestenes, F. Sommen, and N. Van-acker, Lie groups as spin groups, Journal of Mathematical Physics, vol.34, pp.3642-3669, 1993.
DOI : 10.1063/1.530050

L. Dorst, D. Fontijne, and S. Mann, Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry, 2007.
DOI : 10.1145/1466390.1466396

L. Dorst, . Van-den, and R. Boomgaard, An analytical theory of mathematical morphology, Mathematical Morphology and its Applications to Signal Processing, pp.245-250, 1993.

L. Druoton, L. Fuchs, L. Garnier, and R. Langevin, The non-degenerate dupin cyclides in the space of spheres using geometric algebra, Advances in Applied Clifford Algebras, vol.24, pp.515-532, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01288698

J. Du, R. Goldman, and S. Mann, Modeling 3D Geometry in the Clifford Algebra R 4,4, Advances in Applied Clifford Algebras, vol.27, pp.3039-3062, 2017.
DOI : 10.1007/s00006-017-0798-7

R. Easter, . Benjamin-and, and E. Hitzer, Double conformal geometric algebra, Advances in Applied Clifford Algebras, vol.27, pp.2175-2199, 2017.
DOI : 10.1007/s00006-017-0784-0

A. S. Glassner, An introduction to ray tracing, 1989.

R. Goldman and S. Mann, R(4, 4) as a computational framework for 3-dimensional computer graphics, Advances in Applied Clifford Algebras, vol.25, issue.1, pp.113-149, 2015.
DOI : 10.1007/s00006-014-0480-2

A. L. Gregory, J. Lasenby, and A. Agarwal, The elastic theory of shells using geometric algebra, Royal Society open science, vol.4, p.170065, 2017.

D. Hestenes, New foundations for classical mechanics, vol.15, 2012.
DOI : 10.1119/1.16386

E. Hitzer, Geometric operations implemented by conformal geometric algebra neural nodes, 2013.

P. Leopardi, A generalized FFT for Clifford algebras, Bulletin of Belgian Mathematical Society, vol.11, pp.663-688, 2004.

W. Luo, Y. Hu, Z. Yu, L. Yuan, and G. And-l-¨-u, A Hierarchical Representation and Computation Scheme of Arbitrary-dimensional Geometrical Primitives Based on CGA, Advances in Applied Clifford Algebras, vol.27, issue.3, pp.1977-1995, 2017.

M. Papaefthymiou and G. Papagiannakis, Real-time rendering under distant illumination with conformal geometric algebra, Mathematical Methods in the Applied Sciences, 2017.
DOI : 10.1002/mma.4560

S. T. Parkin, A model for quadric surfaces using geometric algebra. Unpublished, 2012.

C. Perwass, Geometric algebra with applications in engineering, 2009.

J. Vince, Geometric algebra for computer graphics, 2008.
DOI : 10.1007/978-1-84628-997-2

S. Zhu, S. Yuan, D. Li, W. Luo, L. Yuan et al., Mvtree for hierarchical network representation based on geometric algebra subspace, Advances in Applied Clifford Algebras, vol.28, issue.2, p.39, 2018.