S. V. Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates, Acta Biomater, vol.6, pp.715-734, 2010.

J. A. Juhasz and S. M. Best, Bioactive ceramics: processing, structures and properties, J. Mater. Sci, vol.47, pp.610-624, 2012.

, Chapter 1 -general chemistry of the calcium orthophosphates, Stud. Inorg. Chem, issue.16, pp.1-62, 1994.

J. H. Shepherd, D. V. Shepherd, and S. M. Best, Substituted hydroxyapatites for bone repair, J. Mater. Sci. Mater. Med, vol.23, pp.2335-2347, 2012.

R. Legros, N. Balmain, and G. Bonel, Structure and composition of the mineral phase of periosteal bone, J. Chem. Res. Synop, pp.8-9, 1986.

J. C. Elliott, D. W. Holcomb, and R. A. Young, Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel, Calcif. Tissue Int, vol.37, pp.372-375, 1985.

M. Vallet-regi and J. Gonzales-calbet, Calcium phosphates as substitution of bone tissues, Prog. Solid State Chem, vol.32, pp.1-31, 2004.

J. C. Trombe and G. Montel, Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice-I On the existence of calcium and strontium oxyapatites, J. Inorg. Nucl. Chem, vol.40, issue.78, p.80298, 1978.

G. Penel, G. Leroy, C. Rey, and E. Bres, MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites, Calcif. Tissue Int, vol.63, pp.475-481, 1998.

I. R. Gibson and W. Bonfield, Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite, J. Biomed. Mater. Res, vol.59, pp.697-708, 2002.

D. Tadic, F. Peters, and M. Epple, Continuous synthesis of amorphous carbonated apatites, Biomaterials, vol.23, issue.01, pp.390-398, 2002.

R. Z. Legeros, O. R. Trautz, E. Klein, and J. P. Legeros, Two types of carbonate substitution in the apatite structure, Experientia, vol.25, pp.5-7, 1968.

, Chapter 4 -mineral, synthetic and biological carbonate apatites, Stud. Inorg. Chem, pp.191-304, 1994.

J. P. Lafon, E. Champion, and D. Bernache-assollant, Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x(CO3)x(OH)2-x-2y(CO3)y ceramics with controlled composition, J. Eur. Ceram. Soc, vol.28, pp.139-147, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00241323

Y. Doi, T. Shibutani, Y. Moriwaki, T. Kajimoto, and Y. Iwayama, Sintered carbonate apatites as bioresorbable bone substitutes, J. Biomed. Mater. Res, vol.39, pp.603-610, 1998.

L. T. Bang, B. D. Long, and R. Othman, Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations, Sci. World J, vol.2014, p.969876, 2014.

Y. Deng, Y. Sun, X. Chen, P. Zhu, and S. Wei, Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin, Mater. Sci. Eng. C, vol.33, pp.2905-2913, 2013.

B. R. Adams, A. Mostafa, Z. Schwartz, and B. D. Boyan, Osteoblast response to nanocrystalline calcium hydroxyapatite depends on carbonate content, J. Biomed. Mater. Res. A, vol.102, pp.3237-3242, 2014.

M. Germaini, R. Detsch, A. Grünewald, A. Magnaudeix, F. Lalloué et al., Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration, Biomed. Mater, vol.12, p.35008, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01913639

Y. Doi, T. Koda, and N. Wakamatsu, Influence of carbonate on sintering of apatites, J. Dent. Res, vol.72, pp.1279-1284, 1993.

C. Vignoles, Contribution à l'étude de l'influence des ions alcalins sur la carbonatation dans les sites de type B des apatites phosphocalciques, 1973.

J. C. Labarthe, G. Bonel, and G. Montel, Sur la structure et les proprités des apatites carbonatées de type B phospho-calciques, Ann. Chim, vol.8, pp.289-301, 1973.

Z. Zyman and M. Tkachenko, CO2 gas-activated sintering of carbonated hydroxyapatites, J. Eur. Ceram. Soc, vol.31, pp.241-248, 2011.

U. Anselmi-tamburini, S. Gennari, J. E. Garay, and Z. A. Munir, Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions, Mater. Sci. Eng. A, vol.394, pp.139-148, 2005.

M. N. Rahaman, Ceramic Processing and Sintering, 2003.

Y. W. Gu, N. H. Loh, K. A. Khor, S. B. Tor, and P. Cheang, Spark plasma sintering of hydroxyapatite powders, Biomaterials, vol.23, issue.01, p.76, 2002.

A. Cuccu, S. Montinaro, R. Orrù, G. Cao, D. Bellucci et al., Consolidation of different hydroxyapatite powders by SPS: optimization of the sintering conditions and characterization of the obtained bulk products, Ceram. Int, vol.41, pp.725-736, 2015.

M. Suresh, P. Biswas, V. Mahender, and R. Johnson, Comparative evaluation of electrical conductivity of hydroxyapatite ceramics densified through ramp and hold, spark plasma and post sinter Hot Isostatic Pressing routes, Mater. Sci. Eng. C, vol.70, issue.1, pp.364-370, 2017.

S. J. Kalita and H. A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: synthesis and characterization, Mater. Sci. Eng. C, vol.27, pp.837-848, 2007.

S. Cazalbou, D. Eichert, X. Ranz, C. Drouet, C. Combes et al., Ion exchanges in apatites for biomedical application, J. Mater. Sci. Mater. Med, vol.16, pp.405-409, 2005.

D. Eichert, C. Drouet, H. Sfihi, C. Rey, and C. Combes, Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization, Biomater. Res. Adv, 2007.

D. Eichert, C. Combes, C. Drouet, and C. Rey, Formation and evolution of hydrated surface layers of apatites, Key Eng. Mater, pp.3-6, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00474890

C. Drouet, M. Carayon, C. Combes, and C. Rey, Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials, Mater. Sci. Eng. C, vol.28, pp.1544-1550, 2008.

D. Grossin, S. Rollin-martinet, C. Estournès, F. Rossignol, E. Champion et al., Biomimetic apatite sintered at very low temperature by spark plasma sintering: physico-chemistry and microstructure aspects, Acta Biomater, vol.6, pp.577-585, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00449219

C. Drouet, F. Bosc, M. Banu, C. Largeot, C. Combes et al., Nanocrystalline apatites: from powders to biomaterials, vol.190, pp.118-122, 2009.

F. Brouillet, D. Laurencin, D. Grossin, C. Drouet, C. Estournes et al., Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations, J. Mater. Sci. Mater. Med, vol.26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186448

A. Coulon, D. Laurencin, A. Grandjean, S. L. Gallet, L. Minier et al., Key parameters for spark plasma sintering of wet-precipitated iodatesubstituted hydroxyapatite, J. Eur. Ceram. Soc, vol.36, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01290954

P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten Von Ges, Wiss. Zu Gött. Math.-Phys. Kl, vol.1918, pp.98-100, 1918.

W. Vogel and R. Hosemann, Evaluation of paracrystalline distortions from line broadening, Acta Crystallogr. A, vol.26, pp.272-277, 1970.

A. Grunenwald, C. Keyser, A. M. Sautereau, E. Crubézy, B. Ludes et al., Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology, J. Archaeol. Sci, vol.49, pp.134-141, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01154618

J. A. Meganck, M. J. Baumann, E. D. Case, L. R. Mccabe, and J. N. Allar, Biaxial flexure testing of calcium phosphate bioceramics for use in tissue engineering, J. Biomed. Mater. Res. A, vol.72, pp.115-126, 2005.

R. Z. Legeros, Effect of carbonate on the lattice parameters of apatite, Nature, vol.206, pp.403-404, 1965.

E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc, vol.23, issue.03, pp.304-306, 2003.

J. C. Elliott, Space group and lattice constants of Ca 10 (PO 4 ) 6 CO 3, J. Appl. Crystallogr, vol.13, pp.618-621, 1980.

N. Vandecandelaere, C. Rey, and C. Drouet, Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters, J. Mater. Sci. Mater. Med, vol.23, pp.2593-2606, 2012.

A. L. Boskey, Amorphous calcium phosphate: the contention of bone, J. Dent. Res, vol.76, pp.1433-1436, 1997.

S. V. Dorozhkin, Amorphous calcium (ortho)phosphates, Acta Biomater, vol.6, pp.4457-4475, 2010.

F. Betts, N. C. Blumenthal, A. S. Posner, G. L. Becker, and A. L. Lehninger, Atomic structure of intracellular amorphous calcium phosphate deposits, Proc. Natl. Acad. Sci, vol.72, pp.2088-2090, 1975.

A. S. Posner, F. Betts, and N. C. Blumenthal, Formation and structure of synthetic and bone hydroxyapatites, Prog. Cryst. Growth Charact, vol.3, pp.90011-90019, 1980.

C. Holt and D. W. Hukins, Structural analysis of the environment of calcium ions in crystalline and amorphous calcium phosphates by X-ray absorption spectroscopy and a hypothesis concerning the biological function of the casein micelle, Int. Dairy J, vol.1, pp.151-165, 1991.

S. Raynaud, E. Champion, D. Bernache-assollant, and P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders, Biomaterials, vol.23, pp.218-224, 2002.

B. O. Fowler, E. C. Moreno, and W. E. Brown, Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate, Arch. Oral Biol, vol.11, pp.477-492, 1966.

C. Rey, C. Combes, C. Drouet, and D. Grossin, Bioactive ceramics: physical chemistry, Compr. Biomater, pp.187-221, 2011.

C. Holt, M. J. Van-kemenade, L. S. Nelson, D. W. Hukins, R. T. Bailey et al., Amorphous calcium phosphates prepared at pH 6.5 and 6.0, Mater. Res. Bull, vol.24, issue.89, pp.90008-90009, 1989.

M. Vignoles, G. Bonel, D. W. Holcomb, and R. A. Young, Influence of preparation conditions on the composition of type B carbonated hydroxyapatite and on the localization of the carbonate ions, Calcif. Tissue Int, vol.43, pp.33-40, 1988.

H. E. Feki, C. Rey, and M. Vignoles, Carbonate ions in apatites: infrared investigations in thev4 CO3 domain, vol.49, pp.269-274, 1991.

C. Rey, J. Lian, M. Grynpas, F. Shapiro, L. Zylberberg et al., Non-apatitic environments in bone mineral: FT-IR detection, biological properties and changes in several disease states, Connect. Tissue Res, vol.21, pp.267-273, 1989.

, Chapter, Stud. Inorg. Chem, p.16, 1994.

J. Barralet, S. Best, and W. Bonfield, Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration, J. Biomed. Mater. Res, vol.41, pp.1097-4636, 1998.

J. Heughebaert, Contribution à l'étude de l'évolution des orthophosphates de calcium précipités amorphes en orthophosphates apatitiques, 1977.

S. V. Dorozhkin, Amorphous calcium phosphates, J. Biomim. Biomater. Tissue Eng, vol.7, pp.27-53, 2010.

C. Combes and C. Rey, Amorphous calcium phosphates: synthesis, properties and uses in biomaterials, Acta Biomater, vol.6, pp.3362-3378, 2010.

A. L. Boskey and A. S. Posner, Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion, J. Phys. Chem, vol.77, pp.2313-2317, 1973.

J. C. Heughebaert and G. Montel, Conversion of amorphous tricalcium phosphate into apatitic tricalcium phosphate, Calcif. Tissue Int, vol.34, pp.103-108, 1982.

C. Rey, C. Combes, C. Drouet, A. Lebugle, H. Sfihi et al., Nanocrystalline apatites in biological systems: characterisation, structure and properties, Mater. Werkst, vol.38, pp.996-1002, 2007.

H. Guo, A. Baker, J. Guo, and C. A. Randall, Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics, J. Am. Ceram. Soc, vol.99, pp.3489-3507, 2016.

J. Guo, H. Guo, A. L. Baker, M. T. Lanagan, E. R. Kupp et al., Cold sintering: a paradigm shift for processing and integration of ceramics, Angew. Chem. Int. Ed, vol.55, pp.11457-11461, 2016.

S. Raynaud, E. Champion, and D. Bernache-assollant, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials, vol.23, pp.219-227, 2002.