V. M. Norwood and R. W. Huigens, Harnessing the chemistry of the indole heterocycle to drive discoveries in biology and medicine, ChemBioChem, 2019.

N. A. Shafakat-alia, B. A. Darab, V. Pradhana, and M. Farooquia, Chemistry and Biology of indoles and Indazoles: A mini-review. Mini-Rev. Med. Chem, vol.13, pp.1792-1800, 2013.

N. K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C. H. Kim et al., Biomedical Importance of Indoles. Molecules, vol.18, pp.6620-6662, 2013.

S. Biswal, U. Sahoo, S. Sethy, H. K. Kumar, and M. Banerjee, Indole: The molecule of diverse biological activities, Asian J. Pharm. Clin. Res, vol.5, pp.1-6, 2012.

H. Johansson, T. Bøgeløv-jørgensen, D. E. Gloriam, and H. Braüner-osborne, Sejer Pedersen, D. 3-Substituted 2-phenyl-indoles: privileged structures for medicinal chemistry, RSC Adv, vol.3, pp.945-960, 2013.

M. Z. Zhang, Q. Chen, and G. F. Yang, A review on recent developments of indole-containing antiviral agents, Eur. J. Med. Chem, vol.89, pp.421-441, 2015.

J. Kim and W. Park, Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration?, J. Microbiol, vol.53, pp.421-428, 2015.

R. J. Melander, M. J. Minvielle, and C. Melander, Controlling bacterial behavior with indole-containing natural products and derivatives, Tetrahedron, vol.70, pp.6363-6372, 2014.

D. Goyal, A. Kaur, and B. Goyal, Benzofuran and Indole: Promising Scaffolds for Drug Development in Alzheimer's Disease, ChemMedChem, vol.13, pp.1275-1299, 2018.

A. Ahmad, W. A. Sakr, and K. M. Rahman, Anticancer properties of indole compounds: mechanism of apoptosis induction and role in chemotherapy, Curr. Drug Targets, vol.11, p.1060, 2010.

P. N. Kalaria, S. C. Karad, and D. K. Raval, A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery, Eur. J. Med. Chem, vol.158, pp.917-936, 2018.

J. Jampilek, Design of antimalarial agents based on natural products, Curr. Org. Chem, vol.21, pp.1824-1846, 2017.

Y. J. Xu and L. Pieters, Recent developments in antimalarial natural products isolated from medicinal plants, Mini-Rev. Med. Chem, vol.13, pp.1056-1072, 2013.

D. S. Barnett and R. K. Guy, Antimalarials in Development in 2014, Chem. Rev, vol.114, pp.11221-11241, 2014.

J. Guillon, P. Grellier, M. Labaied, P. Sonnet, J. M. Léger et al., Synthesis, antimalarial activity and molecular modeling of new pyrrolo[1,2-a]quinoxalines, J. Med. Chem, vol.47, 1997.
URL : https://hal.archives-ouvertes.fr/mnhn-02867477

J. Guillon, A. Cohen, N. M. Gueddouda, R. N. Das, S. Moreau et al., Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives, J. Enzym. Inhib. Med. Chem, vol.32, pp.547-563, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535439

J. Guillon, A. Cohen, R. Nath-das, C. Boudot, N. Meriem-gueddouda et al., Chem. Biol. Drug Des, vol.2, pp.974-995, 2018.

A. Arcadia, S. Cacchi, and F. Marinelli, A versatile approach to 2,3-disubstituted indoles through the palladium-catalysed cyclization of o-alkynyltrifluoroacetanilides with vinyl triflates and aryl halides, Tetrahedron Lett, vol.33, pp.3915-3918, 1992.

S. Cacchi, G. Fabrizi, D. Lamba, F. Marinelli, and L. M. Parisi, 2-Subsitutedd 3-aryl-and 3-heteroarylindoles by the palladium-catalyzed reaction of o-trifluoroacetanilides with aryl bromides and triflates? Synthesis, pp.728-734, 2003.

S. Cacchi, G. Fabrizi, and L. M. Parisi, Preparation of indoles from o-alkynyltrifluoroacetanilides through the aminopalladium-reductive elimination process, Synthesis, pp.1889-1894, 2004.

X. Supplementary and . Data,

G. M. Sheldrick, , 1996.

G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A, vol.64, pp.112-122, 2008.

R. E. Desjardins, C. J. Canfield, J. D. Haynes, and J. D. Chulay, Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique, Antimicrob. Agents Chemother, vol.16, pp.710-718, 1979.

T. N. Bennett, M. Paguio, B. Gligorijevic, C. Seudieu, A. D. Kosar et al., Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy, Antimicrob. Agents Chemother, vol.48, pp.1807-1810, 2004.

D. J. Bacon, C. Latour, C. Lucas, O. Colina, P. Ringwald et al., Comparison of a SYBR green I-based assay with a histidine-rich protein II enzyme-linked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates, Antimicrob. Agents Chemother, vol.51, pp.1172-1178, 2007.

H. Kaddouri, S. Nakache, S. Houzé, F. Mentré, and J. Le-bras, Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration, Antimicrob. Agents Chemother, vol.50, pp.3343-3349, 2006.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol.65, pp.55-63, 1983.

S. A. Emami, S. Zamanai-taghizadeh-rabe, A. Ahi, and M. Mahmoudi, Inhibitory Activity of Eleven Artemisia Species from Iran against Leishmania Major Parasites, Iran J. Basic Med. Sci, vol.15, pp.807-811, 2012.