S. Lee and S. Park, TiO 2 photocatalyst for water treatment applications, J. Ind. Eng. Chem, vol.19, pp.1761-1769, 2013.

Y. Liu and Y. Yang, Recent progress of TiO 2 -based anodes for Liion batteries, J. Nanomater, pp.1-15, 2016.

S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen et al., Titanium dioxide nanostructures for photoelectrochemical applications, Prog. Mater. Sci, vol.98, pp.299-385, 2018.

M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang et al., A review of TiO 2 nanostructured catalysts for sustainable H 2 generation, Int. J. Hydrogen Energy, vol.42, pp.8418-8449, 2017.

Y. Bai, I. Mora-se?o, F. De-angelis, J. Bisquert, and P. Wang, Titanium Dioxide Nanomaterials for Photovoltaic Applications, Chem. Rev, vol.114, 2014.

F. W. Low and C. W. Lai, Recent developments of graphene-TiO 2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells: A review. Renewable Sustainable Energy Rev, vol.82, pp.103-125, 2018.

W. S. Yang, B. Park, E. H. Jung, N. J. Jeon, Y. C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, vol.356, pp.1376-1379, 2017.

, NREL Chart, 2019.

J. Boucle and N. Herlin-boime, The benefits of graphene for hybrid perovskite solar cells, Synth. Met, vol.222, pp.3-16, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01317971

M. Acik and S. B. Darling, Graphene in perovskite solar cells: Device design, characterization and implementation, J. Mater. Chem. A, vol.4, pp.6185-6235, 2016.

M. Hadadian, J. Correa-baena, E. K. Goharshadi, A. Ummadisingu, J. Seo et al., Enhancing Efficiency of Perovskite Solar Cells via N-doped Graphene: Crystal Modification and Surface Passivation, Adv. Mater, vol.28, pp.8681-8686, 2016.

F. Biccari, F. Gabelloni, E. Burzi, M. Gurioli, S. Pescetelli et al., Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm 2 Active Area, Adv. Energy Mater, vol.7, issue.1701349, pp.279-287, 2017.

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, TwoDimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells, ACS Nano, vol.4, pp.887-894, 2010.

J. T. Wang, .. Ball, J. M. Barea, E. M. Abate, A. Alexanderwebber et al., Low-Temperature Processed Electron Collection Layers of Graphene/TiO 2 Nanocomposites in Thin Film Perovskite Solar Cells, Nano Lett, vol.14, 2014.

S. Morales-torres, L. M. Pastrana-martínez, J. L. Figueiredo, J. L. Faria, and A. M. Silva, Design of graphene-based TiO 2 photocatalysts ? a review, Environ. Sci. Pollut. Res, vol.19, pp.3676-3687, 2012.

N. T. Tho, N. T. Mai, N. T. Van, B. D. Phat, L. V. Hieu et al., Direct Synthesis of Reduced Graphene Oxide/ TiO 2 Nanotubes Composite from Graphite Oxide as a HighEfficiency Visible-Light-Driven Photocatalyst, J. Nanosci. Nanotechnol, vol.19, pp.5195-5204, 2019.

H. Atout, M. G. Alvarez, D. Chebli, A. Bouguettoucha, D. Tichit et al., Enhanced photocatalytic degradation of methylene blue: Preparation of TiO 2 /reduced graphene oxide nanocomposites by direct sol-gel and hydrothermal methods, Mater. Res. Bull, vol.95, pp.578-587, 2017.

J. Wang, Y. Lin, M. Pinault, A. Filoramo, M. Fabert et al., Single-step preparation of TiO 2 / MWCNT nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion, ACS Appl. Mater. Interfaces, vol.7, pp.51-56, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134058

W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra, Sinterable Ceramic Powders from Laser-Driven Reactions: I, Process Description and Modeling, J. Am. Ceram. Soc, vol.65, pp.324-330, 1982.

F. Curcio, M. Musci, N. Notaro, and G. De-michele, Synthesis of ultrafine TiO 2 powders by a CW CO 2 laser, Appl. Surf. Sci, vol.46, pp.225-229, 1990.

B. Pignon, H. Maskrot, V. Guyot-ferreol, Y. Leconte, S. Coste et al., HerlinBoime, N. Versatility of laser pyrolysis applied to the synthesis of TiO 2 nanoparticles -Application to UV attenuation, Eur. J. Inorg. Chem, pp.883-889, 2008.

H. P. Klug and L. Alexander, X-ray Diffraction Procedures, 1974.

P. Scherrer, Bestimmung der Grosse und der Inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen, Nachr. Ges. Wiss. Goettingen, pp.98-100, 1918.

S. Wu, W. Wang, W. Tu, S. Yin, Y. Sheng et al., Premixed Stagnation Flame Synthesized TiO 2 Nanoparticles with Mixed Phases for Efficient Photocatalytic Hydrogen Generation, ACS Sustainable Chem. Eng, vol.6, pp.14470-14479, 2018.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gra?zel et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin Solid Films, vol.516, pp.4613-4619, 2008.

B. C. O'regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker, Influence of the TiCl 4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit, J. Phys. Chem. C, pp.111-14001, 2007.

L. Vesce, R. Riccitelli, G. Soscia, T. M. Brown, A. Di-carlo et al., Optimization of nanostructured titania photoanodes for dyesensitized solar cells: Study and experimentation of TiCl 4 treatment, J. Non-Cryst. Solids, vol.356, 1958.

H. K. Adli, T. Harada, S. Nakanishi, and S. Ikeda, Effects of TiCl 4 Treatment on Structural and Electrochemical Properties of a Porous TiO 2 Layer in CH 3 NH 3 PbI 3 Perovskite Solar Cells, Phys. Chem. Chem. Phys, 2017.

M. Abdi-jalebi, M. I. Dar, A. Sadhanala, S. P. Senanayak, F. Giodano et al., Impact of Mesoporous Titania-Perovskite Interface on the Performance of Hybrid Organic-Inorganic Perovskite Solar Cells, J. Phys. Chem. Lett, vol.7, pp.3264-3269, 2016.

H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef et al., TiO 2 Nanocrystals Synthesized by Laser Pyrolysis for the Up-Scaling of Efficient Solid-State Dye-Sensitized Solar Cells, Adv. Energy Mater, pp.1-908, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643218

L. Schmidt-mende and M. Gra?zel, TiO 2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells, Thin Solid Films, vol.500, pp.296-301, 2006.

H. Lee, S. Gaiaschi, P. Chapon, A. Marronnier, H. Lee et al., Direct Experimental Evidence of Halide Ionic Migration under Bias in CH 3 NH 3 PbI 3-x Cl x -Based Perovskite Solar Cells Using GD-OES Analysis, ACS Energy Lett, vol.2, pp.943-949, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01510777

A. Gheno, Y. Huang, J. Boucle, B. Ratier, A. Rolland et al., Toward Highly Efficient Inkjet-Printed Perovskite Solar Cells Fully Processed Under Ambient Conditions and at Low Temperature, Sol. RRL, vol.2, p.1800191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01891660

R. S. Sanchez, V. Gonzales-pedro, J. Lee, N. Park, Y. S. Kang et al., Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis, J. Phys. Chem. Lett, 2014.

G. S. Han, Y. H. Song, Y. U. Jin, J. Lee, N. Park et al., Reduced Graphene Oxide/Mesoporous TiO 2 Nanocomposite Based Perovskite Solar Cells, ACS Appl. Mater. Interfaces, vol.7, pp.23521-23526, 2015.

T. Umeyama, D. Matano, J. Baek, S. Gupta, S. Ito et al., Boosting of the Performance of Perovskite Solar Cells through Systematic Introduction of Reduced Graphene Oxide in TiO 2 Layers, Chem. Lett, vol.44, pp.1410-1412, 2015.

F. Zhang, W. Ma, H. Guo, Y. Zhao, X. Shan et al., Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells, Chem. Mater, vol.28, pp.802-812, 2016.

I. Mesquita, L. Andrade, and A. Mendes, Perovskite solar cells: Materials, configurations and stability. Renewable Sustainable Energy Rev, vol.82, pp.2471-2489, 2018.

N. Aristidou, I. Sanchez-molina, T. Chotchuangchutchaval, M. Brown, L. Martinez et al., The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers, Angew. Chem., Int. Ed, vol.54, pp.8208-8212, 2015.

Z. Hawash, L. K. Ono, Y. Qi, A. Gheno, T. T. Thu-pham et al., Recent Advances in SpiroMeOTAD Hole Transport Material and Its Applications in Organic? Inorganic Halide Perovskite Solar Cells, Sol. Energy Mater. Sol. Cells, vol.5, issue.1700623, pp.347-354, 2017.

S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, vol.342, pp.341-344, 2013.

M. Bouchard, J. Hilhorst, S. Pouget, F. Alam, M. Mendez et al., Direct Evidence of Chlorine Induced Preferential Crystalline Orientation in Methylammonium Lead Iodide Perovskites Grown on TiO 2, J. Phys. Chem. C, pp.121-7596, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01975253

V. Georgakilas, Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications, Chem. Rev, vol.112, issue.11, pp.6156-6214, 2012.

V. Roiati, Investigating charge dynamics in halide perovskite sensitized mesostructured solar cells, Energy Environ. Sci, vol.7, issue.6, pp.1889-1894, 2014.