H. Goldsmid, Thermoelectric Refrigeration, 1964.

, Thermoelectrics and its Energy Harvesting, 2012.

L. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Science, vol.321, pp.1457-1461, 2008.

G. A. Slack, CRC Handbook of Thermoelectrics, 1995.

Z. Chen, G. Han, L. Cheng, and L. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Prog. Nat. Sci, vol.22, pp.535-549, 2012.

S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, and . Yb14mnsb11, New High Efficiency Thermoelectric Material for Power Generation, Chem. Mater, vol.18, pp.1873-1877, 2006.

S. K. Bux, A. Zevalkink, O. Janka, D. Uhl, S. M. Kauzlarich et al., Glass-like Lattice Thermal Conductivity and High Thermoelectric Efficiency in Yb9Mn4.2Sb9, J. Mater. Chem

U. Aydemir, A. Zevalkink, A. Ormeci, Z. M. Gibbs, S. Bux et al.,

, Thermoelectric Enhancement in BaGa2Sb2 by Zn Doping, Chem. Mater, vol.27, pp.1622-1630, 2015.

B. R. Ortiz, P. Gorai, V. Stevanovic, and E. S. Toberer, Thermoelectric Performance and Defect Chemistry in n-type Zintl KGaSb4, Chem. Mater, vol.29, pp.4523-4534, 2017.

Z. Wu, J. Li, X. Li, M. Zhu, K. Wu et al.,

, Chem. Mater, vol.28, pp.6917-6924, 2016.

H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle et al., Atomic Interactions in the p-Type Clathrate I Ba8Au5, Inorg. Chem, vol.50, pp.1250-1257, 2011.

X. Shi, J. Yang, S. Bai, J. Yang, H. Wang et al., On the Design of High-Efficiency Thermoelectric Clathrates through a Systematic Cross-Substitution of Framework Elements, Adv. Funct. Mater, vol.20, pp.755-763, 2010.

E. S. Toberer, M. Christensen, B. B. Iversen, and G. J. Snyder, High Temperature Thermoelectric Efficiency in Ba8Ga16Ge30, Phys. Rev. B, vol.77, issue.075203, 2008.

K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Ag9TlTe5: A Highperformance Thermoelectric Bulk Material with Extremely Low Thermal Conductivity, Appl. Phys. Lett, vol.87, 2005.

Q. Guo, M. Chan, B. A. Kuropatwa, and H. Kleinke, Enhanced Thermoelectric Properties of Variants of Tl9SbTe6 and Tl9BiTe6, Chem. Mater, vol.25, pp.4097-4104, 2013.

Q. Guo, A. Assoud, and H. Kleinke, Improved Bulk Materials with Thermoelectric Figureof-Merit Greater than 1: Tl10?xSnxTe6 and Tl10?xPbxTe6, Adv. Energy Mater, vol.4, 2014.

T. Zhou, B. Lenoir, M. Colin, A. Dauscher, R. A. Orabi et al.,

, Appl. Phys. Lett, vol.98, 2011.

A. Orabi, R. Fontaine, B. Gautier, R. Gougeon, P. Gall et al., Cu Insertion Into the Mo12 Cluster Compound Cs2Mo12Se14: Synthesis, Crystal and Electronic Structures, and Physical Properties, Inorg. Chem, vol.55, pp.6616-6624, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01344318

P. Gougeon, P. Gall, R. Orabi, B. Fontaine, R. Gautier et al., Crystal and Electronic Structures, and Thermoelectric Properties of the Novel Cluster Compound Ag3In2Mo15Se19

, Chem. Mater, vol.24, pp.2899-2908, 2012.

A. Orabi, R. Gougeon, P. Gall, P. Fontaine, B. Gautier et al., X-ray Characterization, Electronic Band Structure, and Thermoelectric Properties of the Cluster Compound Ag2Tl2Mo9Se11, Inorg. Chem, vol.53, pp.11699-11709, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082282

A. Mrotzek and M. G. Kanatzidis, Design" in Solid-State Chemistry Based on Phase Homologies. The Concept of Structural Evolution and the New Megaseries Am

, Acc. Chem. Res, vol.36, pp.111-119, 2003.

M. G. Kanatzidis, Structural evolution and phase homologies for ?design? and prediction of solid-state compounds, Acc. Chem. Res, vol.38, pp.359-368, 2005.

B. Makovicky, W. C. Mumme, and J. A. Watts, The Crystals Structure of Synthetic

. Pavonite, AgBi3S5, and The Definition of the Pavonite Homologous Series, Can. Mineral, vol.15, pp.339-348, 1977.

A. Pring, M. Jercher, and E. Makovicky, Disorder and compositional variation in the lillianite homologous series, Mineral. Mag, vol.63, pp.917-926, 1999.

A. Olvera, G. Shi, H. Djieutedjeu, A. Page, C. Uher et al., Pb7Bi4Se13: a lillianite homologue with promising thermoelectric properties, Inorg. Chem, vol.54, pp.746-755, 2015.

J. Casamento, J. S. Lopez, N. A. Moroz, A. Olvera, H. Djieutedjeu et al., Crystal Structure and Thermoelectric Properties of the 7,7L Lillianite Homologue Pb6Bi2Se9, vol.56, pp.261-268, 2017.

A. R. Graham, R. M. Thompson, and L. G. Berry, Studies on mineral sulpho-salts: XVII -Cannizzarite, Am. Mineral, vol.38, pp.536-544, 1953.

E. Matzat and . Cannizzarite, Acta Cryst, vol.35, pp.133-136, 1979.

G. Ferraris, E. Makovicky, and S. Merlino, Crystallography of Modular Materials, Oxford Scholarship, 2008.

E. Makovicky and B. G. Hyde, Non-commensurate (misfit) layer structures, Struct. Bonding, vol.46, pp.101-170, 1981.

E. Makovicky and B. G. Hyde, in Incommensurate misfit sandwiched layered compounds, Materials Science Forum, pp.1-100, 1992.

D. Topa, E. Makovicky, and H. Dittrich, The crystal structure of 7K : 12Q cannizzarite from Vulcano, Italy. Can. Mineral, vol.48, pp.483-495, 2010.

S. V. Borisov, N. V. Pervukhina, S. A. Magarill, N. V. Kuratieva, I. A. Bryzgalov et al., The crystal structure of (Cd, In)-rich cannizzarite from Kudriavy Volcano, Can. Mineral, vol.50, pp.387-395, 2012.

L. Shelimova, O. Karpinskii, P. Konstantinov, E. Avilov, M. Kretova et al., Composition and properties of compounds in the PbSe-Bi2Se3 system, Inorg. Mater, vol.46, pp.120-126, 2010.

L. Shelimova, O. Karpinskii, and V. Zemskov, X-ray diffraction study of ternary layered compounds in the PbSe-Bi2Se3 system, Inorg. Mater, vol.44, pp.927-931, 2008.

V. Zemskov, L. Shelimova, P. Konstantinov, E. Avilov, M. Kretova et al., Thermoelectric materials with low heat conductivity based on PbSe-Bi2Se3 compounds, Inorg Mater: Applied Res, vol.2, pp.405-413, 2011.

M. Ohta, D. Y. Chung, M. Kunii, and M. G. Kanatzidis, Low lattice thermal conductivity in Pb5Bi6Se14, Pb3Bi2S6, and PbBi2S4: promising thermoelectric materials in the cannizzarite, lillianite, and galenobismuthite homologous series, J. Mater. Chem. A, vol.2, 2014.

S. Sassi, C. Candolfi, V. Ohorodniichuk, C. Gendarme, P. Masschelein et al., Thermoelectric Properties of Polycrystalline n-Type Pb5Bi6Se14, J. Electron. Mater, vol.46, pp.2790-2796, 2017.

K. Segawa, A. A. Taskin, and Y. Ando, Pb5Bi24Se41: A new member of the homologous series forming topological insulator heterostructures, J. Solid State Chem, vol.221, pp.196-201, 2015.

K. Nakayama, K. Eto, Y. Tanaka, T. Sato, S. Souma et al., Manipulation of Topological States and the Bulk Band Gap Using Natural Heterostructures of a Topological Insulator, Phys. Rev. Lett, p.236804, 2012.

L. Fang, C. C. Stoumpos, Y. Jia, A. Glatz, D. Y. Chung et al., Dirac fermions and superconductivity in the homologous structures (AgxPb1?xSe)5(Bi2Se3)3m (m = 1, 2), Phys. Rev. B, vol.90, p.20504, 2014.

S. Sasaki, K. Segawa, and Y. Ando, Superconductor derived from a topological insulator heterostructure, Phys. Rev. B, vol.90, p.220504, 2014.

X. Ren, A. K. Singh, L. Fang, M. G. Kanatzidis, F. Tavazza et al., Atom Probe Tomography Analysis of Ag Doping in 2D Layered Material (PbSe)5(Bi2Se3)3, Nano Lett, vol.16, pp.6064-6069, 2016.

L. J. Farrugia, WinGX and ORTEP for Windows: an update, J. Appl. Cryst, vol.45, pp.849-854, 2012.

Y. Zhang, A. P. Wilkinson, P. L. Lee, S. D. Shastri, D. Shu et al., Determining metal ion distributions using resonant scattering at very highenergy K-edges: Bi/Pb in Pb5Bi6Se14, J. Appl. Cryst, vol.38, pp.433-441, 2005.

, VALENCE software

I. D. Brown, The Chemical Bond in Inorganic Chemistry

U. K. Oxford, , 2002.

R. D. Shannon and . Cryst, , vol.32, pp.751-767, 1976.

P. Kubelka and F. Munk, Ein Beitrag Zur Optik Der Farbanstriche, Z. Tech. Phys, vol.12, pp.593-601, 1932.

E. Alleno, D. Be?rardan, C. Byl, C. Candolfi, R. Daou et al., A round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3, Rev. Sci. Instrum, vol.86, p.11301, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01280799

M. Christensen, S. Johnsen, and B. B. Iversen, Thermoelectric clathrates of type I, Dalton Trans, vol.39, pp.978-992, 2010.

U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci et al., Dalton Trans, vol.39, pp.1078-1088, 2010.

B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses, Phys. Rev. B, vol.56, pp.15081-15089, 1997.

A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, Stereochemistry of post-transition metal oxides: revision of the classical lone pair model, Chem. Soc. Rev, vol.40, pp.4455-4463, 2011.

G. A. Fisher and N. C. Norman, The structures of the group 15 element (III) halides and halogenoanions, Adv. Inorg. Chem, vol.41, pp.233-271, 1994.

Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu et al., Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity, J. Am. Chem. Soc, vol.138, pp.16364-16371, 2016.

S. J. Pennycook and L. A. Boatner, Chemically sensitive structure imaging with a scanning transmission electron microscope, Nature, vol.336, pp.565-567, 1988.

E. Makovicky and B. J. Skinner, Studies of the Sulfosalts of Copper. VI. Low-Temperature Exsolution in Synthetic Tetrahedrite Solid Solution, Cu12+xSb4+yS13. Can. Mineral, vol.16, pp.611-623, 1978.

K. Tatsuka and N. Morimoto, Tetrahedrite Stability Relations in the Cu-Sb-S System. Econ

, Geol. Bull. Soc. Econ. Geol, vol.72, pp.258-270, 1977.

K. Tatsuka and N. Morimoto, Composition Variation and Polymorphism of Tetrahedrite in the Cu-Sb-System Below 400°C, Am. Mineral, vol.58, pp.425-434, 1973.

Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Exosultion Process as a Route toward Extremely Low Thermal Conductivity in Cu12Sb4-xTexS13 Tetrahedrites

, Chem. Mater, vol.27, pp.8354-8361, 2015.

E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev, vol.93, pp.632-633, 1954.

B. T. Moss, The Interpretation of the Properties of Indium Antimonide, Proc. Phys. Soc. B, vol.67, pp.775-782, 1954.

Y. C. Akgöz and G. A. Saunders, Space-time symmetry restrictions on the form of transport tensors. I. Galvanomagnetic effects, J. Phys. C: Solid State Phys, vol.8, pp.1387-1396, 1975.

D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B, vol.46, pp.6131-6140, 1992.

E. S. Toberer, A. F. May, and G. J. Snyder, Zintl Chemistry for Designing High Efficiency Thermoelectric Materials, Chem. Mater, vol.22, pp.624-634, 2010.

Y. Bouyrie, C. Candolfi, S. Pailhe?s, M. M. Koza, B. Malaman et al., From Crystal to Glass-like Thermal Conductivity in Crystalline Minerals, Phys. Chem. Chem. Phys, vol.17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01279097

W. Lai, Y. Wang, D. T. Morelli, and X. Lu, From Bonding Asymmetry to Anharmonic Rattling in Cu12Sb4S13 Tetrahedrites: When Lone-Pair Electrons Are Not So Lonely, Adv. Funct. Mater, vol.25, pp.3648-3657, 2015.

A. F. May, O. Delaire, J. L. Niedziela, E. Lara-curzio, M. A. Susner et al., Structural phase transition and phonon instability in Cu12Sb4S13, Phys. Rev. B, p.64104, 2016.

Y. Dong, A. R. Khabibullin, K. Wei, J. R. Salvador, G. S. Nolas et al.,

B. Pbcusbs3, Stereochemically Active Lone-Pair Electrons that Induce Low Thermal Conductivity, Chem. Phys. Chem, vol.16, pp.3264-3270, 2015.

B. Du, R. Zhang, K. Chen, A. Mahajan, and M. J. Reece, The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2, J. Mater. Chem. A, vol.5, pp.3249-3259, 2017.

. Pb1--se,

. Pb1-se,

. Pb2--se,

. Pb2--se, , pp.2-27

. Pb4--se, , pp.4-29

. Pb4--se,

. Pb5--se, , pp.5-32

. Pb5--se, , pp.5-27