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4.1. Introduction 

Microwave filters are key elements in many communication systems. Regarding the system and the position of the filter within the 

system, its design has to deal with particular electrical specifications and constraints that concern its weight and footprint. For 

instance, in satellite transponders, high quality factor (Q) filters based on cavities or dielectric resonators are required for output 

multiplexers, which have to cope with severe specifications in terms of insertion losses and power handling. For filters in the receiver 

part, the insertion loss and power handling performances are less critical, allowing the usage of more compact technologies, which 

make easier the integration with active circuits also. 

For a receive filter, the challenge is to design a compact bandpass filter with a flat response in the passband and a sharp transition 

in the passband edges. The insertion loss is not crucial, since it does not affect the total noise factor as the filter is placed after the 

low-noise amplifier (LNA) and it can be compensated by the amplifier, leaving a room to the design of a lossy filter. Such a filter 

accepts additional losses, which can be distributed in the network in order to provide a flat transmission in the passband and a 

sharp selectivity. 

This new class of microwave filters has been proposed recently in [1]-[6], and can be divided into two families mainly. Additional 

losses are introduced either in individual resonators, forming a network with non-uniform-Q resonators [3]-[4], or distributed 

through resistive cross-couplings [4]-[6].  

In this literature, lossy filter prototypes are realized using different technologies and working frequencies making the comparison 

between different approaches difficult. In this chapter, the two approaches are compared considering the same specifications and 

the same technology. A classical filter is designed and fabricated first. Afterwards, lossy filters formed on the one hand by a 

transversal network with non-uniform Q resonators and, on the other hand, by an in-line network with resistive cross couplings 

are designed and fabricated for comparison. Finally, absorptive lossy filters are designed and fabricated. Such filters integrate the 

property of attenuating reflected wave that is often a requirement for protecting the receiver subsystem. 

4.2. Impact of losses on filter performances 

4.2.1. Relation between quality factor and  insertion losses 

The unloaded quality factor is related to the resonator technology (coaxial, dielectric, planar structure, superconductor ...). 

Generally, high Q resonators are physically larger and require the use of more expensive technology. For example, dielectric 

resonator filters can offer a very high quality factor [7], but their volume and cost is much higher than filters in microstrip technology 

[8]. It is shown in [9], that insertion losses (IL) are inversely proportional to the unloaded quality factor Qu. For instance, insertion 

losses in the middle of the bandwidth of a Tchebychev-type bandpass filter can be estimated by: 

 𝐼𝐿 = 8.686[𝑁 − 1.5]
𝑓0

∆𝑓𝑄𝑢
  (1) 

Where N is the degree of the filter, f0 its center frequency and Δf its passband. 

 

Physically, this relationship can be explained by the fact that the group delay of the filter is inversely proportional to its bandwidth. 

Thus, for a given quality factor, the more the signal remains in the filter, the greater the losses are. In addition, the group delay of a 

filter always increases near the edges of the bandwidth. Thus, insertion losses near the edges of the bandwidth will be higher than 

the value in the middle of the bandwidth. Assuming a filter with a uniform distribution of the quality factor between resonators 

and a cutoff pulsation ω = 1 rad.s-1, the increase in insertion losses can be estimated as [10]: 

 ∆𝐼𝐿(𝜔) ≈ 8.686(
𝑇𝑔(𝜔)

𝑄𝑢
) (2) 
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Figure 4.1 shows the variation of insertion losses as a function of different Q values. One can observe a degradation of the flatness 

in the passband, which results in a rounding of passband edges. This variation, associated with less distinct transmission zeros, 

results in a degradation of the out-of-band rejections.  

 

 
Figure 4.1. Filter responses for different values of the unloaded quality factor 

Figure 4.2 shows the displacement of the poles of the transfer function in the complex plane in the ideal case without losses (infinite 

Q) and the real case with losses (finite Q). Taking into account losses in the transfer function causes the poles to shift to the left in 

the complex plane. This shift is inversely proportional to the quality factor of the resonators: 

 𝛼 =
𝑄𝑝−𝑄0

𝑄𝑝
 (3) 

where Q0 is the quality factor of the initial filtering function and Qp is that of the modified function. 

 

If all the resonators have the same finite quality factor, it is therefore possible to evaluate the offset  and compensate it upstream 

to maintain the same transfer function, excepted a fix amount losses. 

This predistortion technique has been the subject of several studies [11] - [14]. 
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Figure 4.2. Typical displacement of the poles in the complex plane, considering finite and infinite quality factors (example of 

a 6 pole transfer function) 

4.2.2. Compensation by predistortion 

The predistortion technique, which was developed in 1940 [13], is a method of total or partial compensation. The principle is to shift 

the poles (p) of the transfer function to the right of the complex plane: 

 𝑝 → 𝑝 − 𝛼 (4) 

Thus, the transfer function of the filter in presence of losses corresponds to a conventional lossless transfer function, with a constant 

additional attenuation, whatever the frequency. 

There are some disadvantages associated with the predistortion technique, which suffers from poor bandwidth adaptation. Indeed, 

the polynomial reflection function is evaluated by applying the relation of conservativity, and the displacement of poles and zeros 

of reflection destroys the matching condition. It should be noted that this approach leads to several solutions [13] for the realization 

of the filter since several choices are possible to determine the reflection zeros. 

In order to limit the previous disadvantages, an adaptive or partial predistortion can be applied in order to compensate the rounding 

of the bandwidth edges while keeping a correct matching. Details of these techniques are presented respectively in [12] and [14]. 

Relatively high return loss levels limit the use of these filters to systems or subsystems where the power level is low. In the payload 

of a satellite, these filters are used for input multiplexers, placing a circulator that directs the reflected signal to a suitable load. Since 

the input signal of the input multiplexer is relatively weak, the power dissipated by the load remains low. The subsystem introduces 

more losses but makes it possible to limit the variation in amplitude in the bandwidth with a smaller device. 

4.2.3. Synthesis of lossy filters 

The synthesis of lossy filters is intended to achieve a filter having an improved flatness in the bandwidth, playing on the distribution 

of losses. Thus, compared to a filter resulting from a conventional synthesis, this type of filter will have for a number of resonators 

and a given maximum quality factor, a higher relative loss level but a flatness equivalent to a much higher quality factor. In 

comparison with the predistortion technique, this approach degrades the level of adaptation much less. Figure 4.3 shows the 

expected filter response for different Q values in the case of lossy synthesis. One can see a decline of insertion loss, but still a very 

flat and very selective response. This result is obtained by using resonators with different quality factors and / or introducing lossy 

couplings. In the following paragraphs, different approaches proposed in the literature for lossy filter synthesis are presented. 
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Figure 4.3. Lossy filter response for different Q values  

 

1) Lossy resonators and resistive cross couplings for optimizing transfer function 

The first approach, proposed in [15], consists in multiplying the polynomial lossless transfer function by a constant attenuation 

factor K < 1. This transfer function includes finite losses; consequently, the condition of unit conservativity connecting scattering 

parameters S21 and S11 does not apply. Thus, it is difficult to understand how to form the reflection function and then the input 

impedance, in order to synthesize the network exactly. This problem is solved using a new pre-distortion technique, which is 

applicable only in the case of a symmetric quadripole, where an approximation can be made to compute S parameters, based on the 

theory of odd and even modes. The network comprises coupled resonators with different Q factors at its input and output. 

An improvement of this technique is presented in [16]. The technique consists in distributing the losses created by attenuation factor 

K. Losses are distributed through the network by adding a finite pole-zero pair to the loss transfer function. The additional pole 

corresponds to the addition of a resonator within the network, while the additional zero creates a parallel signal transmission path. 

These additional elements make possible to improve electrical performance, including flatness in the passband, matching and 

selectivity. The parallel path is made by simply placing a resistor between two non-adjacent resonators of the network to create a 

non-resonant resistive coupling. 

2) Resistive couplings and non-resonating nodes for attenuating transfer and reflection functions 

The previous approach is extended in [4] and [5] considering different attenuation factors Kij <1 for transfer and reflection functions. 

In this general case, several methods for direct synthesis of the lossy coupling matrix have been developed in the literature [4]-[6], 

[17] [18]. 

A special case is to consider a constant attenuation (K11 = K21 = K22 = K < 1). From a network point of view, this particular case is 

equivalent to placing two identical attenuators at the input and output ports of a lossless filter. In the general case, the synthesis 

technique makes possible to have filtering functions with different attenuation levels for the input and output reflections [4]. 

It is then generally preferable to distribute the losses in the network using resistive couplings and non-resonant nodes [5] to simplify 

the manufacturing process. The distribution of losses within the network is achieved by applying a series of hyperbolic rotation on 

the complex coupling matrix. 

3) Filter networks with heterogeneous Q resonators 

Initially, the preferred way to implement lossy filters was to introduce resistive couplings. In some cases, the introduction of 

resonators with different quality factors can further optimize performance. On the other hand, several authors proposed the 

implementation of lossy filters based solely on heterogeneous quality factor resonators. 

Ref. [19] shows that the flatness of the filter with resonators having non-uniform quality factors can be optimized by placing the 
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more dissipative elements at the ends of the network. Apart from an optimization of quality factors and couplings, the 

generalization of this approach has not been made. 

Arranging the lossy filter into a transversal network allows optimizing the flatness in the bandwidth more easily, by controlling the 

distribution of losses through the parallel paths. In this case, each resonator or each path can be optimized to find the desired 

performance. A theoretical approach is presented in [3] to explain the influence of losses in each path of the transversal network. 

4) Lossy redundant structures  

In order to be relatively comprehensive in our description, we have to report on a different approach developed as in [20]. In this 

approach, the circuit is split into two subnetworks, one symmetrical and the other antisymmetrical, and each of these subnets is 

redundantly duplicated. 

A compromise between redundancy (thus circuit size) and degrees of freedom in the design of the filter is necessary. These degrees 

of freedom can be exploited to play with the return loss and the selectivity or reduce the quality factors of resonators. 

The technique consists in determining the even and odd sub-networks. This step is generally followed by a simplification in order 

to reduce the network toward N resonators (non-redundant network).  

4.3. Reference design: hairpin microstrip filter 

The objective of this work is to design a compact microstrip filter centered at 3.8 GHz with an 800-MHz bandwidth, considering the 

specifications detailed in Table 4.1. The initial design is achieved by a hairpin microstrip filter. The resonators are fabricated on an 

alumina substrate having a height of 0.254 mm. The substrate permittivity is 𝜀𝑟 = 9.9 and its loss tangent is 𝑡𝑎𝑛 𝛿 = 0.0002. The 

metallization is 5 µm thick. Using this technology, the unloaded quality factor of each hairpin resonator is around 95. In order to 

fulfill the previous requirements, a six-pole Chebyshev transfer function is synthesized [19]. The synthesized response is given in 

Figure 4.4. The response fulfills the specifications, except for the flatness, which attains 1 dB. 

 

Table 4.1 - Specifications for this work. Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

Parameter Value Unit 

Center frequency (f0) 3800 MHz 

Bandwidth 800 MHZ 

Insertion loss (IL) < 5 dB 

Flatness (IL variation) < 0.7 dB 

Return loss (RL) > 18 dB 

Attenuation at f0 +/- 1000 MHz 35 dBc 

Attenuation at f0 +/- 2000 MHz 20 dBc 

 

The filter can be structured either as an in-line network or as a transversal network, as shown in Figs. 5 and 6. One can note that the 

transversal network is a transversal pair network, since this particular topology is a practical form for implementing lossy filters. 

The corresponding coupling matrices are given together with the two coupling networks. Diagonal terms (j0.05) in the coupling 

matrices are placed here for modeling the finite Q value of resonators. 
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Figure 4.4 – Synthesized (Chebyshev) response for the classical hairpin filter (reference design with uniform-Q resonators). 

Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

 

 
(a) 

 S 1 2 3 4 5 6 L 

S 0 1.002 0 0 0 0 0 0 

1 1.002 j0.05 0.843 0 0 0 0 0 

2 0 0.843 j0.05 0.611 0 0 0 0 

3 0 0 0.611 j0.05 0.583 0 0 0 

4 0 0 0 0.583 j0.05 0.611 0 0 

5 0 0 0  0.611 j0.05 0.843 0 

6 0 0 0 0 0 0.843 j0.05 1.002 

L 0 0 0 0 0 0 1.002 0 

(b) 

Figure 4.5 - Coupling diagram (a) and coupling matrix (b) for realizing the initial filter as an in-line network with uniform-Q 

resonators (Q=95). Reprinted with permission from ref. [1]; copyright 2014 IEEE. 
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(a) 

 S 1 2 3 4 5 6 L 

S 0 0.638 0.629 0.447 0 0 0 0 

1 0.638 j0.05 0 0 0 0 0.356 0 

2 0.629 0 j0.05 0 0 -0.971 0 0 

3 0.447 0 0 j0.05 1.199 0 0 0 

4 0 0 0 1.199 j0.05 0 0 0.447 

5 0 0 -0.971  0 j0.05 0 0.629 

6 0 0.356 0 0 0 0 j0.05 0.638 

L 0 0 0 0 0.447 0.629 0.638 0 

(b) 

Figure 4.6 - Coupling diagram (a) and coupling matrix (b) for realizing the initial filter as a transversal network with uniform-

Q resonators (Q=95). Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

The reference filter is implemented as an in-line network using hairpin resonators as shown in Figure 4.7. The structure has a surface 

of 210 mm2. The simulations have been performed using Momentum TM included in Agilent Advanced Design System TM (ADS) and 

dimensions have been optimized by parameter extraction [20]. A prototype has been fabricated and measured. The comparison 

between measured and simulated responses is presented in Figure 4.8. A slight reduction in the bandwidth is observed compared 

to EM simulations. The return loss in the bandwidth is still better than 20 dB and the insertion loss is comparable to the simulated 

one, around 1.9 dB. The measured flatness is 1.2 dB, i.e. slightly degraded compared to the theory. 

 

 
Figure 4.7 – Layout of the classical Chebyshev filter implemented as aligned hairpin coupled resonators. Reprinted with 

permission from ref. [1]; copyright 2014 IEEE. 

 
Figure 4.8 - Classical Chebyshev filter : measurements and EM simulation. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 
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In order to explain the difference between measurements and full wave simulations, a sensitivity analysis has been performed 

considering typical manufacturing tolerances. An 8-µm tolerance for transmission line dimensions and a 1%-variation in the 

permittivity value have been considered for the Monte-Carlo analysis performed with Agilent ADS and presented in Figure 4.9. 

The permittivity variation mainly affects the frequency, while geometrical variations also affect the return loss. Excluding flatness 

constraints, more than 70% of realizations meet the specifications. 

The objective of this work is now to improve the flatness by designing lossy filters, considering margins available on the insertion 

losses. Several approaches are compared. The electrical performances of this conventional filter serve as reference for the next 

designs. 

 

 
Figure 4.9 – Classical Chebyshev filter : Monte-Carlo analysis considering typical manufacturing tolerances (8 µm for 

transmission line dimensions and 1% for relative permittivity). Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

4.4. Design of lossy filters for improved flatness 

The principle of lossy filters consists to add and to distribute losses into the coupled-resonator network for retrieving a lossless-like 

transfer function, i.e. having the same flatness and the same selectivity, at a sacrifice on the absolute level of losses. Two ways are 

possible for realizing a lossy filter. The first way consists in introducing losses in the network through resistive cross-couplings [18] 

and the second in introducing additional losses directly within some resonators [3]. These two approaches may be mixed also [16]. 

In this work, lossy filters are designed, on one hand as in-line networks with resistive cross-couplings and on the other hand as 

transversal networks with heterogeneous-Q resonators. 

4.4.1. In-line network with resistive cross couplings  

The introduction of resistive cross-couplings (RCCs) in the network allows adjusting the flatness in the passband [22], [17]. The 

number of RCCs in the network is an important parameter, which impacts the performance of the filter directly, in particular its 

insertion loss and flatness. 

For comparison, two lossy filters have been synthesized, with 2 and 4 resistive cross-couplings respectively, using the approach and 

software developed in [21] and [22] respectively. The coupling diagrams and coupling matrices can be found in Figs. 10 and 11. The 

lossy filter responses are compared together with the classical filter response in Figure 4.12. One can observe a slight reduction in 

the selectivity for the lossy filters.  

The flatness is around 0.4 dB for the structure with 2 RCCs and 0.3 dB for the structure with 4 RCCs. At the same time, the insertion 

loss is found to be 3.4 dB for the first filter (2 RCCs) and 4.2 dB for the second one (4 RCCs). The RCCs are implemented using 

engraved Ta2N resistors (R = 50 .sq) placed between quarter-wave transmission lines, as shown in Figure 4.13. 
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(a) 

 S 1 2 3 4 5 6 L 

S 0 1.304 0 0 0 0 0 0 

1 1.304 j0.059 1.191 0 0 0 0 0 

2 0 1.191 j0.091 0.696 j0.031 0 0 0 

3 0 0 0.696 j0.091 0.679 j0.031 0 0 

4 0 0 j0.031 0.679 j0.091 0.696 0 0 

5 0 0 0 j0.031 0.696 j0.091 1.191 0 

6 0 0 0 0 0 1.191 j0.059 1.304 

L 0 0 0 0 0 0 1.304 0 

(b) 

Figure 4.10 – Coupling diagram (a) and coupling matrix (b) of the in-line network with 2 RCCs. Reprinted with permission 

from ref. [1]; copyright 2014 IEEE. 

 
(a) 

 S 1 2 3 4 5 6 L 

S 0 1.304 0 0 0 0 0 0 

1 1.304 j0.064 1.168 j0.004 0 0 0 0 

2 0 1.168 j0.115 0.713 j0.055 0 0 0 

3 0 j0.004 0.713 j0.119 0.675 j0.055 0 0 

4 0 0 j0.055 0.675 j0.119 0.713 j0.004 0 

5 0 0 0 j0.055 0.713 j0.115 1.168 0 

6 0 0 0 0 j0.004 1.168 j0.064 1.304 

L 0 0 0 0 0 0 1.304 0 

(b) 

Figure 4.11 – Coupling diagram (a) and coupling matrix (b) of the in-line network with 4 RCCs. Reprinted with permission 

from ref. [1]; copyright 2014 IEEE. 
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Figure 4.12. – Synthesized responses for the lossy filters with 2 and 4 RCCs. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
(a) 

 
(b) 

Figure 4.13 – Layout of lossy filters implemented as in-line coupled hairpin resonators with (a) two RCCs and (b) four RCCs. 

Reprinted with permission from ref. [1]; copyright 2014 IEEE. 
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(a) 

 
(b) 

Figure 4.14 – Simulated response of the lossy filters with (a) two RCCs and (b) four RCCs. Reprinted with permission from 

ref. [1]; copyright 2014 IEEE. 

The filters were designed and optimized by parameter extraction using Momentum TM for full wave simulations. Figure 4.14 shows 

the simulated scattering parameters compared to theoretical ones for both lossy filters. The lossy filter with two RCCs presents a 

flatness of 0.4 dB, with a maximum insertion loss of 3.1 dB. The lossy filter with four RCCs presents a flatness of 0.3 dB, and a 

maximum insertion loss of 4.2 dB. The filters were fabricated using the previous substrate. A photography is displayed in Figure 

4.15. The lossy filter with 2 RCCs has a size of 290 mm2 and the lossy filter with 4 RCCs a size of 300 mm2. 

Measurements are presented in Figure 4.16. The measured performances remain comparable to the simulated ones for the two 

fabricated filters except a slight reduction in the bandwidth and a slight degradation of the flatness (+0.1 dB). 
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(a) 

 
(b) 

Figure 4.15 – Fabricated lossy filters with (a) two RCCs and (b) four RCCs Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
(a) 

 
(b) 

Figure 4.16 – Lossy filters with (a) two RCCs and (b) four RCCs : measurements and EM simulations. Reprinted with 

permission from ref. [1]; copyright 2014 IEEE. 
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(a) 

 
(b) 

Figure 4.17 – Lossy filters with (a) two RCCs and (b) four RCCs: Monte-Carlo analysis considering typical manufacturing 

tolerances tolerances (8 µm for transmission line dimensions, 1% for relative permittivity, and 2% for engraved resistors). 

Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

 
Figure 4.18 – Measured out-of-band performances for lossy filters with resistive cross-couplings. Reprinted with permission 

from ref. [1]; copyright 2014 IEEE. 
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A Monte-Carlo analysis has been performed considering the same manufacturing tolerances. A 2% tolerance is also considered for 

engraved resistors. Figure 4.17 compares the measurements together with the Monte-Carlo analysis. About 65% of realizations met 

the specifications for the filter with 2 RCCs, and 60% considering the filter with 4 RCCs. 

Performances at higher frequency are displayed in Figure 4.18. One can observe that lossy filters provide better attenuation of the 

second harmonic. 

The lossy filter with two RCCs satisfies all the specifications. Adding two additional resistive cross-couplings provides a very small 

improvement in terms of flatness, while the degradation of insertion loss becomes significant. The equivalent quality factor (Q) of 

the lossy filter with two RCCs is about 300, i.e. three times higher compared to the real one. 

4.4.2. Transversal network with non-uniform Q resonators 

In the case of a transversal network, the signal follows multiple paths. Each path contributes in the filter response almost 

independently. Using a transversal pair network, the path comprising the stronger coupled resonators mainly contributes to 

insertion loss in the passband edges. For these resonators, the higher the Q is, the higher the selectivity is. Moreover, the insertion 

loss is also maximized in the passband edges; consequently these resonators need to be high-Q. Other paths, i.e. with weakly coupled 

resonators, contribute to insertion loss in the middle of the passband. Consequently, the quality factor of such resonators can be 

degraded for increasing the insertion loss in the middle of the passband, reducing by this way the insertion loss variation in the 

bandpass filter response. 

The transversal pair network presented in Figure 4.19 can be synthesized as a lossy filter network by optimizing a coupling matrix 

obtained from a general Chebyshev filtering function, as introduced in [19]. Initially, a coupling matrix with uniform Q resonators 

is considered. The synthesis consists in optimizing the couplings and the quality factors of each pair for achieving the desired 

performances. It is clear that the quality factors can only be degraded in this case. 

In order to fit with the specifications in Table 4.1, the coupling matrix synthesized from the Chebyshev filtering function (Figure 

4.6) is optimized considering now non-uniform Q resonators using a lumped element equivalent circuit defined with Agilent ADS 
TM. The optimized coupling matrix is given in Figure 4.20. The imaginary parts of diagonal terms in the coupling matrix reflect the 

quality factors of individual resonators. One can see that Q factors are degraded from 95 (ri = 0.05) respectively to 57 (ri = 0.08) and 

35 (ri = 0.13) in the two other paths. 

 
Figure 4.19. – Six-pole transversal filter network with non-uniform Q resonators. Reprinted with permission from ref. [1]; 

copyright 2014 IEEE. 

 S 1 2 3 4 5 6 L 

S 0 0.653 0.645 0.462 0 0 0 0 

1 0.653 j0.13 0 0 0 0 0.374 0 

2 0.645 0 j0.08 0 0 -1.026 0 0 

3 0.462 0 0 j0.05 1.249 0 0 0 

4 0 0 0 1.249 j0.05 0 0 0.462 

5 0 0 -1.026  0 j0.08 0 0.645 

6 0 0.374 0 0 0 0 j0.13 0.653 

L 0 0 0 0 0.462 0.645 0.653 0 

Figure 4.20 - Coupling matrix of transversal network with non-uniform Q resonators. Reprinted with permission from ref. [1]; 

copyright 2014 IEEE. 
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Figure 4.21 - Synthesized response of the transversal network with non-uniform Q resonators. Reprinted with permission 

from ref. [1]; copyright 2014 IEEE. 

 
Figure 4.22 - Layout of the transversal filter with non-uniform Q resonators. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

The initial and optimized responses are compared in Figure 4.21. One can observe that the transversal network with non-uniform 

Q has improved performances in terms of flatness while maintaining a similar selectivity and return loss level. The insertion loss 

variation reaches now 0.1 dB in the passband (compared to 1 dB for the transversal network with uniform Q resonators) and the 

minimum insertion loss is around 3.3 dB (+ 1.7 dB compared to the transversal network with uniform Q resonators). 

The filter is designed with Momentum TM using microstrip hairpin resonators. With 240-µm-wide lines, the achieved Q factor is equal 

to 95. By reducing the width at 70 µm, the Q factor is diminished to 57. In order to achieve a lower Q factor (Q=35), engraved 

resistors are introduced in the resonators. Figure 4.22 shows the layout of the six-pole transversal filter with non-uniform Q 

resonators. Its size covers 480 mm2 and the scattering parameters obtained from EM simulations are shown in Figure 4.23. 

The filter has been fabricated (Figure 4.24) and characterized. A good agreement is found between measurements and EM 

simulations as shown in Figure 4.25. Only a slight reduction in the bandwidth is observed. The fabricated filter presents an insertion 

loss variation of 0.4 dB, the minimum insertion loss is about 2.2 dB and the return loss is better than 18 dB. 
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Figure 4.23 - Simulated response of the transversal filter with non-uniform Q resonators. Reprinted with permission from ref. 

[1]; copyright 2014 IEEE. 

 
Figure 4.24 - Fabricated transversal filter with non-uniform Q resonators Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
(a) 
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(b) 

Figure 4.25 - Measurements of the transversal filter with non-uniform Q resonators: (a) around the passband and (b) in a broad 

band. Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

The sensitivity analysis presented in Figure 4.26 has been performed considering the previous tolerances. With this transversal 

design, only 37% of the realizations met the specifications. Moreover, evaluating the out-of-band performance, spurious 

transmissions are found close to the passband, violating the specifications in terms of rejection in the stopband. For this reason, the 

lossy filter with 2 RCCs is preferred for our application. However, the spurious transmission could be attenuated by introducing 

lowpass cells in the structure. 

 

Figure 4.26 – Transversal lossy filter: Monte-Carlo analysis considering typical manufacturing tolerances (8 µm for 

transmission line dimensions, 1% for relative permittivity, and 2% for engraved resistors). Reprinted with permission from 

ref. [1]; copyright 2014 IEEE. 

4.5. Design of absorptive lossy filters for attenuation of reflected waves 

A frequent need for the design of receivers is to attenuate reflected waves in the stopband in order to protect circuits placed before. 

The protection is generally achieved by introducing attenuators before the filter, which affect both the reflected and transmitted 

signals. Using lossy filters, the transmitted signal is already attenuated in order to improve the flatness. Attenuation of the reflected 

signal is then achieved by modifying slightly the architecture, without additional insertion loss in the passband. 

Following the procedure detailed in [4], [16], [22], the attenuation is distributed together with the losses among the network, using 
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resistive couplings and non-resonating nodes (NRN). The previous in-line network has been modified as presented in Figure 4.27, 

in order to design two lossy filters with symmetric and asymmetric levels of attenuation. 

 
Figure 4.27. Coupling network for absortive lossy filters (symmetric and asymetric configurations). Reprinted with permission 

from ref. [1]; copyright 2014 IEEE. 

 
Figure 4.28 - Synthesized response of the symmetric absorptive lossy network. Reprinted with permission from ref. [1]; 

copyright 2014 IEEE. 

4.5.1. Symmetric absorptive lossy filter 

In this configuration, both the transmission and reflection functions will be attenuated with the same factor (K = 0.63). Figure 4.28 

shows the ideal response of this filter, and the coupling matrix synthesized following the procedure detailed in [21] is given in 

Figure 4.29. Again, the filter is implemented using microstrip hairpin resonators as shown in Figure 4.30. The filter is dimensioned 

by parameter extraction from full wave simulations with Momentum TM. The simulated scattering parameters are presented in Figure 

4.31. As expected, the attenuation in the stopband is around 4 dB (K = 0.63). The insertion loss is slightly higher (4.3 dB) and the 

insertion loss variation attains 0.6 dB. The filter was fabricated using the same substrate (Figure 4.32). Measurements in Figure 4.33 

are found in good accordance with the simulation, except a slight reduction in the bandwidth and a slight degradation of the flatness 

(+0.05 dB). 
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 S 1 2 3 4 5 6 7 8 L 

S 0 0.3662 0 0 0 0 0 0 0 0 

1 0.3662 j0.0315 -0.3173 j0.0051 0 0 0 0 0 0 

2 0 -0.3173 j0.0529 0.8326 0 0 0 0 0 0 

3 0 j0.0051 0.8326 j0.0753 0.5969 j0.0175 0 0 0 0 

4 0 0 0 0.5969 j0.0977 0.5384 j0.0449 0 0 0 

5 0 0 0 j0.0175 0.5384 j0.0701 0.5969 0 0 0 

6 0 0 0 0 j0.0449 0.5969 j0.2330 0.8326 j0.1352 0 

7 0 0 0 0 0 0 0.8326 j0.0527 -0.3173 0 

8 0 0 0 0 0 0 j0.1352 -0.3173 j0.0670 0.3662 

L 0 0 0 0 0 0 0 0 0.3662 0 

Figure 4.29 - Coupling matrix of the symmetric absorptive lossy network. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
Figure 4.30 - Layout of the symmetric absorptive lossy filter. Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

 
Figure 4.31 - Simulated response of the symmetric absorptive lossy filter. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
Figure 4.32 - Fabricated absorptive lossy filters (symmetric and asymetric attenuations). Reprinted with permission from ref. 

[1]; copyright 2014 IEEE. 
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Figure 4.33 - Mesured response of the symmetric absorptive lossy filter. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
Figure 4.34 – Symmetric absorptive lossy filter: Monte-Carlo analysis considering typical manufacturing tolerances (8 µm for 

transmission line dimensions, 1% for relative permittivity, and 2% for engraved resistors). Reprinted with permission from 

ref. [1]; copyright 2014 IEEE. 

The sensitivity analysis performed with the previous tolerances is presented in Figure 4.34. For this design with non-resonating 

nodes, 59% of realizations met the specifications. 

4.5.2. Asymmetric absorptive lossy filters 

An asymmetric configuration has been designed applying the same procedure, with attenuation levels set to 6 dB and 1 dB 

respectively at port 1 and port 2 (Figure 4.36). The network remains identical, but the synthesis leads to another coupling matrix, as 

shown in Figure 4.35. The layout is presented in Figure 4.37 and the simulated response in Figure 4.38. 
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 S 1 2 3 4 5 6 7 8 L 

S 0 0.3940 0 0 0 0 0 0 0 0 

1 0.3940 j0.0113 -0.3974 j0.0167 0 0 0 0 0 0 

2 0 -0.3974 j0.0523 0.8543 0 0 0 0 0 0 

3 0 j0.0167 0.8543 j0.0792 0.6093 j0.0111 0 0 0 0 

4 0 0 0 0.6093 j0.0647 0.5728 j0.0128 0 0 0 

5 0 0 0 j0.0111 0.5728 j0.0634 0.5917 0 0 0 

6 0 0 0 0 j0.0128 0.5917 j0.1171 0.7908 j0.0517 0 

7 0 0 0 0 0 0 0.7908 j0.0527 -0.3660 0 

8 0 0 0 0 0 0 j0.0517 -0.3660 j0.0430 0.3875 

L 0 0 0 0 0 0 0 0 0.3875 0 

Figure 4.35 - Coupling matrix of the asymmetric absorptive lossy network. 

 
Figure 4.36 - Synthesized response of the asymmetric absorptive lossy network. Reprinted with permission from ref. [1]; 

copyright 2014 IEEE. 

 
Figure 4.37 - Layout of the asymmetric absorptive lossy filter. Reprinted with permission from ref. [1]; copyright 2014 IEEE. 

The insertion loss and the flatness are 4 dB and 0.6 dB respectively. The reflection parameter is 18 dB in the stopband but presents 

a rebound around 3.3 GHz. As shown in Figure 4.39, measurements agree well with simulations except a slight reduction in the 

bandwidth and a degradation of the flatness (+0.3 dB). The sensitivity analysis presented in Figure 4.40, shows that 62% of the 

realizations met the specifications. 

Finally, the out-of-band performance (shown in Figure 4.41) is satisfying for both symmetric and asymmetric absorptive lossy filters, 

considering specifications given in Table 4.1. 
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Figure 4.38 - Simulated response of the asymmetric absorptive lossy filter. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
Figure 4.39 - Measured response of the asymmetric absorptive lossy filter. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 
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Figure 4.40 – Asymmetric absorptive lossy filter: Monte-Carlo analysis considering typical manufacturing tolerances (8 µm for 

transmission line dimensions, 1% for relative permittivity, and 2% for engraved resistors). Reprinted with permission from 

ref. [1]; copyright 2014 IEEE. 

 
Figure 4.41 - Absorptive lossy filters: measured out-of-band performances. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 



24 

 
Figure 4.42 - Flatness versus IL for all filters designed in this work. Reprinted with permission from ref. [1]; copyright 2014 

IEEE. 

Table 4.2 - Measured performances for all filters designed in this work. Reprinted with permission from ref. [1]; copyright 

2014 IEEE. 

 
IL 

(dB) 

Flatness 

(dB) 

RL 

(dB) 

20-dB 

rejection 

bandwidth 

(GHz) 

Surface 

(mm2) 

Reference filter 1.9 1.2 20 2.5 210 

Transversal lossy filter with non-

uniform Q resonators 
2.5 0.5 18 0.5 480 

In-line lossy filter with 2 RCCs 3.4 0.45 20 2.5 290 

In-line lossy filter with 4 RCCs 4.2 0.35 20 2.5 300 

Symmetric absorptive lossy filter  

(4 RCCs and 2 NRNs) 
5 0.55 19 2.5 610 

Asymmetric absorptive lossy filter  

(4 RCCs and 2 NRNs) 
4.2 0.9 19 2.5 610 

4.6. Summary 

Several designs of lossy filters for receivers in satellite transponders have been investigated in order to improve the performance in 

terms of flatness compared to a classical hairpin filter design. Flatness and insertion loss performances for all solutions are 

summarized in Figure 4.42. 

The reference design is a microstrip filter made of coupled hairpin resonators. Two approaches have investigated for improving the 

flatness of the reference design. Lossy filter designs have been compared to the reference, considering the same specifications and 

the same technology. An in-line network with resistive cross-couplings and a transversal network with heterogeneous Q resonators 
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have been designed and fabricated first. Theoretically, the transversal network leads to better performances in terms of flatness, but 

its implementation is generally difficult, especially considering the input/output junctions between multiple paths, which are 

naturally dispersive, causing spurious transmissions in the stopband. Moreover, a Monte Carlo analysis has been performed, 

showing higher sensitivity of this later solution with respect to manufacturing tolerances. Consequently, considering measured 

performances reported in Table 4.2, in-line networks with resistive cross-couplings appear to be the best solution for implementing 

our receiver filter. In particular, the version with 2 RCCs appears as a good compromise between flatness and insertion loss. 

Finally, the in-line network has been transformed introducing non-resonant nodes and additional resistive cross-couplings in order 

to design absorptive lossy filters. The resulting filters allow attenuating the reflected wave substantially with a reduced impact on 

the absolute level of losses. 
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