K. W. Barnham, M. Mazzer, and B. Clive, Resolving the energy crisis: Nuclear or photovoltaics?, Nat. Mater, vol.5, pp.161-164, 2006.

R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming et al., Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement, vol.332, 2011.

T. Zhang, C. Liu, W. Dong, W. Wang, Y. Sun et al., Photoelectrochemical Complexes of Fucoxanthin-Chlorophyll Protein for Bio-Photovoltaic Conversion with a High Open-Circuit Photovoltage, Chem. Asian J, vol.12, pp.2996-2999, 2017.

Z. Yu, S. You, C. Wang, C. Bu, S. Bai et al., Efficient dye-sensitized solar cells employing highly environmentally-friendly ubiquinone 10 based I2-free electrolyte inspired by photosynthesis, J. Mater. Chem. A, vol.2, pp.9007-9010, 2014.

G. Calogero, A. Bartolotta, G. Di-marco, A. Di-carlo, and F. Bonaccorso, Vegetable-based dye-sensitized solar cells, Chem. Soc. Rev, vol.44, pp.3244-3294, 2015.

A. M. Ammar, H. S. Mohamed, M. M. Yousef, G. M. Abdel-hafez, A. S. Hassanien et al., Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes, J. Nanomater, vol.10, 2019.

N. Quintana, F. Van-der-kooy, M. D. Van-de-rhee, G. P. Voshol, and R. Verpoorte, Renewable energy from Cyanobacteria: Energy production optimization by metabolic pathway engineering, Appl. Microbiol. Biotechnol, vol.91, pp.471-490, 2011.

M. K. Sarma, S. Kaushik, and P. Goswami, Cyanobacteria: A metabolic power house for harvesting solar energy to produce bio-electricity and biofuels, Biomass Bioenergy, vol.90, pp.187-201, 2016.

L. Wondraczek, M. Batentschuk, M. A. Schmidt, R. Borchardt, S. Scheiner et al., Solar spectral conversion for improving the photosynthetic activity in algae reactors, Nat. Commun, 2013.

M. Calvin, Solar Energy by Photosynthesis, Science, vol.184, 1974.

B. O'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature, vol.353, pp.737-740, 1991.

M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Acc. Chem. Res, vol.42, pp.1788-1798, 2009.

S. Mathew, A. Yella, P. Gao, R. Humphry-baker, B. F. Curchod et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem, vol.6, p.242, 2014.

K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa et al., Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chem. Commun, vol.51, pp.15894-15897, 2015.

B. E. Hardin, H. J. Snaith, and M. D. Mcgehee, The renaissance of dye-sensitized solar cells, Nat. Photonics, vol.6, pp.162-169, 2012.

H. S. Jung and J. Lee, Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems, J. Phys. Chem. Lett, vol.4, pp.1682-1693, 2013.

M. Chevrier, H. Hawashin, S. Richeter, A. Mehdi, M. Surin et al., Well-designed poly(3-hexylthiophene) as hole transporting material: A new opportunity for solid-state dye-sensitized solar cells, Synth. Met, vol.226, pp.157-163, 2017.

I. Benesperi, H. Michaels, and M. Freitag, The researcher's guide to solid-state dye-sensitized solar cells, J. Mater. Chem, vol.6, pp.11903-11942, 2018.

J. Bouclé and J. Ackermann, Solid-state dye-sensitized and bulk heterojunction solar cells using TiO 2 and ZnO nanostructures: Recent progress and new concepts at the borderline, Polym. Int, vol.61, pp.355-373, 2012.

Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo et al., 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials, Nat. Commun, vol.8, 2017.

W. Zhang, Y. Wu, H. W. Bahng, Y. Cao, C. Yi et al., Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells, Energy Environ. Sci, vol.11, pp.1779-1787, 2018.

A. O. Adeloye and P. A. Ajibade, Towards the Development of Functionalized PolypyridineLigands for Ru(II) Complexes as Photosensitizers inDye-Sensitized Solar Cells (DSSCs), Molecules, vol.19, pp.12421-12460, 2014.

Y. Qin and Q. Peng, Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells, Int. J. Photoenergy, vol.21, 2012.

J. Ji, H. Zhou, and H. K. Kim, Rational design criteria for D-?-A structured organic and porphyrin sensitizers for highly efficient dye-sensitized solar cells, J. Mater. Chem. A, vol.6, pp.14518-14545, 2018.

, The yield of 12 g of chlorophyll an extracted from 1 kg of spirulina is based on an ethanolic extraction of spirulina obtained as a dry green powder from Algosud®

A. Agostiano, L. Catucci, P. Cosma, and P. Fini, Aggregation processes and photophysical properties of chlorophyll a in aqueous solutions modulated by the presence of cyclodextrins, Phys. Chem. Chem. Phys, vol.5, pp.2122-2128, 2003.

X. Wang, H. Tamiaki, L. Wang, N. Tamai, O. Kitao et al., Chlorophyll-a Derivatives with Various Hydrocarbon Ester Groups for Efficient Dye-Sensitized Solar Cells: Static and Ultrafast Evaluations on Electron Injection and Charge Collection Processes, Langmuir, vol.26, pp.6320-6327, 2010.

S. Sasaki, X. Wang, T. Ikeuchi, and H. Tamiaki, Synthesis of carboxylated chlorophylls and their application as functional materials, J. Porphyr. Phthalocyanines, vol.19, pp.517-526, 2015.

H. Tamiaki, N. Hagio, S. Tsuzuki, Y. Cui, T. Zouta et al., Synthesis of carboxylated chlorophyll derivatives and their activities in dye-sensitized solar cells, Tetrahedron, vol.74, pp.4078-4085, 2018.

Y. Li, W. Zhao, M. Li, G. Chen, X. Wang et al., Chlorophyll-Based Organic-Inorganic Heterojunction Solar Cells, Chem. Eur. J, vol.23, pp.10886-10892, 2017.

W. Zhao, S. Sasaki, H. Tamiaki, Y. Sanehira, Y. Wei et al., Enhancement of performance in chlorophyll-based bulk-heterojunction organic-inorganic solar cells upon aggregate management via solvent engineering, Org. Electron, vol.59, pp.419-426, 2018.

Y. Cui, W. Zhao, S. Ogasawara, X. Wang, and H. Tamiaki, Fabrication and performance of all-solid-state dye-sensitized solar cells using synthetic carboxylated and pyridylated chlorophyll derivatives, J. Photochem. Photobiol. A, vol.353, pp.625-630, 2018.

K. M. Smith, D. A. Goff, and D. J. Simpson, The meso substitution of chlorophyll derivatives: Direct route for transformation of bacteriopheophorbides d into bacteriopheophorbides c, J. Am. Chem. Soc, vol.107, pp.4946-4954, 1985.

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth et al., Synthetic Zinc and Magnesium Chlorin Aggregates as Models for Supramolecular Antenna Complexes in Chlorosomes of Green Photosynthetic Bacteria, Photochem. Photobiol, vol.63, pp.92-99, 1996.

L. Sun and S. Wang, Spectral and nonlinear optical properties of chlorophyll b depends on distortion of two-dimensional electron configuration along one axis, Dyes Pigm, vol.61, pp.273-278, 2004.

Y. Li, S. Sasaki, H. Tamiaki, C. Liu, J. Song et al., Zinc chlorophyll aggregates as hole transporters for biocompatible, natural-photosynthesis-inspired solar cells, J. Power Sources, vol.297, pp.519-524, 2015.

S. Jungsuttiwong, K. Sirithip, N. Prachumrak, R. Tarsang, T. Sudyoadsuk et al., Significant enhancement in the performance of porphyrin for dye-sensitized solar cells: Aggregation control using chenodeoxycholic acid, New J. Chem, vol.41, pp.7081-7091, 2017.

A. Kay and M. Graetzel, Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins, J. Phys. Chem, vol.97, pp.6272-6277, 1993.

K. Lee, V. Suryanarayanan, K. Ho, K. R. Thomas, and J. T. Lin, Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study, Sol. Energy Mat. Sol. Cells, vol.91, pp.1426-1431, 2007.

J. Yum, S. Jang, R. Humphry-baker, M. Grätzel, J. Cid et al., Effect of Coadsorbent on the Photovoltaic Performance of Zinc Pthalocyanine-Sensitized Solar Cells, Langmuir, vol.24, pp.5636-5640, 2008.

H. Lu, C. Tsai, W. Yen, C. Hsieh, C. Lee et al., Control of Dye Aggregation and Electron Injection for Highly Efficient Porphyrin Sensitizers Adsorbed on Semiconductor Films with Varying Ratios of Coadsorbate, J. Phys. Chem. C, vol.113, pp.20990-20997, 2009.

S. Qu, W. Wu, J. Hua, C. Kong, Y. Long et al., New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.114, pp.1343-1349, 2010.

M. K. Nazeeruddin, R. Humphry-baker, M. Grätzel, D. Wöhrle, G. Schnurpfeil et al., Efficient Near-IR Sensitization of Nanocrystalline TiO 2 Films by Zinc and Aluminum Phthalocyanines, J. Porphyr. Phthalocyanines, vol.3, pp.230-237, 1999.

H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef et al., TiO 2 Nanocrystals Synthesized by Laser Pyrolysis for the Up-Scaling of Efficient Solid-State Dye-Sensitized Solar Cells, Adv. Energy Mater, vol.1, pp.908-916, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00643218

L. Schmidt-mende, U. Bach, R. Humphry-baker, T. Horiuchi, H. Miura et al., Organic Dye for Highly Efficient Solid-State Dye-Sensitized Solar Cells, Adv. Mater, vol.17, pp.813-815, 2005.

S. Erten-ela, K. Ocakoglu, A. Tarnowska, O. Vakuliuk, and D. T. Gryko, Performance of zinc chlorophyll based molecules for dye sensitized solar cell, Dyes Pigm, vol.114, pp.129-137, 2015.

K. Ocakoglu, S. Erten-ela, K. Saleem-joya, and E. Harputlu, Artificial zinc chlorin dyes for dye sensitized solar cell, Inorg. Chim. Acta, vol.439, pp.30-34, 2016.

W. A. Dhafina, M. Z. Daud, and H. Salleh, The sensitization effect of anthocyanin and chlorophyll dyes on optical and photovoltaic properties of zinc oxide based dye-sensitized solar cells, Optik, 2019.

B. B. Panda, P. K. Mahapatra, and M. K. Ghosh, Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC), J. Electron. Mater, vol.47, pp.3657-3665, 2018.

X. Wang, O. Kitao, H. Zhou, H. Tamiaki, and S. Sasaki, Extension of ?-conjugation length along the Qy axis of a chlorophylla derivative for efficient dye-sensitized solar cells, Chem. Commun, pp.1523-1525, 2009.

Y. Sun, X. Wang, G. Chen, C. Zhan, O. Kitao et al., Near-infrared absorption carboxylated chlorophyll-a derivatives for biocompatible dye-sensitized hydrogen evolution, Int. J. Hydrog. Energy, vol.42, pp.15731-15738, 2017.

A. Fattori, M. Cangiotti, L. Fiorani, S. Lucchi, and M. F. Ottaviani, Characterization of the TiO 2 /Dye/Electrolyte Interfaces in Dye-Sensitized Solar Cells by Means of a Titania-Binding Nitroxide, Langmuir, vol.30, pp.13570-13580, 2014.

L. J. Boucher and J. J. Katz, Aggregation of metallochlorophylls, J. Am. Chem. Soc, vol.89, pp.4703-4708, 1967.

H. Tamiaki, S. Yagai, and T. Miyatake, Synthetic zinc tetrapyrroles complexing with pyridine as a single axial ligand, Bioorg. Med. Chem, vol.6, pp.2171-2178, 1998.

X. Wang, Y. Koyama, Y. Wada, S. Sasaki, and H. Tamiaki, A dye-sensitized solar cell using pheophytin-carotenoid adduct: Enhancement of photocurrent by electron and singlet-energy transfer and by suppression of singlet-triplet annihilation due to the presence of the carotenoid moiety, Chem. Phys. Lett, vol.439, pp.115-120, 2007.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., Electronic Supplementary Material(ESI) for Chemical Science, 2019.

K. Khairy, D. Budil, and P. Fajer, Nonlinear-least-squares analysis of slow motional regime EPR spectra, J. Magn. Reson, vol.183, pp.152-159, 2006.

B. C. O'regan and F. Lenzmann, Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO 2 /Dye/CuSCN Photovoltaic Cells, J. Phys. Chem. B, vol.108, pp.4342-4350, 2004.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Sample Availability: Samples of the compounds M1-M6 are available from the authors. © 2020 by the authors. Licensee MDPI