, CDCl 3 ) 8.13 (d, 2H, J¼ 8.10 Hz, H-3 00 and H-5 00 ), 7.98 (s, 1H, H-4), 7.82 (d, 1H, J¼ 9.00 Hz, H-5), 7.79 (d, 2H, J¼ 8.10 Hz, H-3 0 and H-5 0 ), 7.50 (d, 2H, J¼ 8.10 Hz, H-2 00 and H-6 00 ), 7.42 (d, 1H, J¼ 2.40 Hz, H-8), 7.41 (d, 2H, J¼ 8.10 Hz, H-2 0 and H-6 0 ), 7.33 (dd, 1H, J¼ 9

, 13C NMR d (75 MHz, CDCl 3 ) 159.9, vol.142, pp.130-133

, C-6), vol.129, p.0

. Maldi-tof-ms-m,

, CDCl 3 ) 8.14 (d, 2H, J¼ 8.40 Hz, H-3 00 and H-5 00 ), 8.00 (d, 1H, J¼ 9, 30 Hz, H-8), 7.94 (s, 1H, H-4), 7.74 (d, 2H, J¼ 8.40 Hz, H-3 0 and H-5 0 ), vol.7

, C-4a), 140.0 (C-1 0 ), 13C NMR d (75 MHz, CDCl 3 ) 161.9, vol.151, p.0

. Maldi-tof-ms-m, , pp.568-407

, Pale-yellow oil (96%)

H. Nmr, 7.96 (d, 1H, J¼ 9.00 Hz, H-8), 7.89 (s, 1H, H-4), 7.71 (d, 2H, J¼ 8.10 Hz, H-3 0 and H-5 0 ), 7.45 (d, 2H, J¼ 8.10 Hz, H-2 00 and H-6 00 ), 7.38 (d, 2H, J¼ 8.40 Hz, H-2 0 and H-6 0 ), 7.10 (d, 1H, J¼ 2.40 Hz, H-5), 7.04 (dd, 1H, J¼ 9.00 and 2.40 Hz, p.0

, C-4a), 140.0 (C-1 0 ), 13C NMR d (75 MHz, CDCl 3 ) 161.9, vol.160, p.0

. Maldi-tof-ms-m, -methylpiperazin-1-yl)butyl)aminomethyl]phenylgisoquinoline (2k) Yellow oil (97%); 1 H NMR d (300 MHz, 30 Hz, H-8), 7.91 (s, 1H, H-4), 7.71 (d, 2H, J¼ 8.10 Hz, H-3 0 and H-5 0 ), 7.44 (d, 2H, J¼ 8.10 Hz, H-2 00 and H-6 00 ), 7.38 (d, 2H, J¼ 8.10 Hz, H-2 0 and H-6 0 ), vol.7

, C-4a), 140.0 (C-1 0 ), 139.8 (C-1 00 ), 131.6 (C-2 0 and C-6 0 ), 13C NMR d (75 MHz, CDCl 3 ) 161.9, vol.151, p.0

. Maldi-tof-ms-m, Yellow oil (59%); 1 H NMR d (300 MHz, CDCl 3 ) 8.14 (d, 2H, J¼ 8.20 Hz, H-3 00 and H-5 00 ), 8.00 (d, 1H, J¼ 9.20 Hz, H-8), 7.95 (s, 1H, H-4), 7.74 (d, 2H, J¼ 8.20 Hz, H-3 0 and H-5 0 ), 7.48 (d, 2H, J¼ 8.20 Hz, H-2 00 and H-6 00 ), 7.42 (d, 2H, J¼ 8.20 Hz, H-2 0 and H-6 0 ), 7.16 (d, 1H, J¼ 2.50 Hz, H-5), 7.10 (dd, 1H, J¼ 9.20 and 2.50 Hz

, C-4a), 140.0 (C-1 0 ), 152.0 (C-1), vol.142, p.0

. Maldi-tof-ms-m, 89 (d, 2H, J¼ 8.10 Hz, H-2 00 and H-6 00 ), 7.63 (d, 2H, CDCl 3 ) 8.69 (d, 2H, J¼ 8.10 Hz, H-2 0 and H-6 0 ), 8.17 (dd, 1H, J¼ 8.40 and 1.20 Hz, H-8), 8.14 (dd, 1H, J¼ 8.40 and 1.20 Hz, H-5), 7.91 (ddd, 1H, J¼ 8.40, 7.00 and 1.20 Hz, H-7), vol.7, p.0

. Maldi-tof-ms-m,

, C-3 00 and C-5 00 , C-2 0 and C-6 0 , C-2 00 and C-6 00 ), 123.7 (C-4a), 105.7 (C-5), vol.138, p.0

. Maldi-tof-ms-m, -dimethylaminopropyl)aminomethyl]phenylgquinazoline (3i) Yellow oil (97%); 1 H NMR d (300 MHz, 30 Hz, H-8), 7.80 (d, 2H, J¼ 8.25 Hz, H-2 0 and H-6 0 ), 7.48 (d, 2H, J¼ 8.25 Hz, H-3 00 and H-5 00 ), 7.43 (dd, 1H, J¼ 9.30 and 2.80 Hz, H-7), 7.40 (d, 2H, J¼ 8.25 Hz, H-3 0 and H-5 0 ), vol.7

, 13C NMR d (75 MHz, CDCl 3 ) 167.6 (C-6), 159.8 (C-2), 159.2 (C-4), 149.4 (C-8a), vol.143, p.0

. Maldi-tof-ms-m,

, 82 (d, 2H, J¼ 8.15 Hz, H-2 0 and H-6'), 7.51 (d, 2H, J¼ 8.15 Hz, H-3 00 and H-5 00 ), 7.44 (dd, 1H, J¼ 9.00 and 2.60 Hz, H-7), 7.42 (d, 2H, J¼ 8.15 Hz, H-3 0 and H-5 0 ), 7.32 (d, 1H, J¼ 2.60 Hz, H-5), vol.7

, 13C NMR d (75 MHz, CDCl 3 ) 167.7 (C-6), vol.159, p.0

. Maldi-tof-ms-m, -methylpiperazin-1-yl)propyl)aminomethyl]phenylgquinazoline (3k) Yellow oil (97%); 1 H NMR d (300 MHz, 7.47 (dd, 1H, J¼ 9.20 and 2.80 Hz, H-7), 7.39 (d, 2H, J¼ 8.30 Hz, H-3 0 and H-5 0 ), vol.7, p.0

, CDCl 3 ) 167.6 (C-6), 159.8 (C-2), 159.3 (C-4), 149.5 (C-8a), 13C NMR d (75 MHz, vol.143, p.0

, 123.7 (C-4a), 105.7 (C-5), vol.129, pp.127-131

. Maldi-tof-ms-m, -methylpiperazin-1-yl)ethyl)aminomethyl]phenylgquinazoline (3l) Yellow oil (96%); 1 H NMR d (300 MHz, 20 Hz, H-8), 7.87 (d, 2H, J¼ 8.20 Hz, H-2 0 and H-6 0 ), 7.55 (d, 2H, J¼ 8.30 Hz, H-3 00 and H-5 00 ), 7.52 (dd, 1H, J¼ 9.20 and 2.80 Hz, H-7), vol.7

, 13C NMR d (75 MHz, CDCl 3 ) 167.7 (C-6), 159.8 (C-2), vol.159, p.0

. Maldi-tof-ms-m, m) Pale yellow oil (89%); 1 H NMR d (300 MHz, CDCl 3 ) 8.61 (d, 2H, J¼ 7.95 Hz, H-2 00 and H-6 00 ), 7.99 (d, 1H, J¼ 9.15 Hz, H-5), 7.82 (d, 2H, J¼ 7.95 Hz, H-2 0 and H-6 0 ), 7.53 (d, 2H, J¼ 7.95 Hz, H-3 00 and H-5 00 ), 7.46 (d, 2H, J¼ 7.95 Hz, H-3 0 and H-5 0 ), 7.41 (d, 1H, J¼ 2.10 Hz, H-8), vol.7

. Maldi-tof-ms-m, -dimethylaminopropyl)aminomethyl]phenylgquinazoline (3n) Yellow oil (96%); 1 H NMR d (300 MHz, 20 Hz, H-5), 7.80 (d, 2H, J¼ 8.20 Hz, H-2 0 and H-6'), 7.51 (d, 2H, J¼ 8.20 Hz, H-3 00 and H-5 00 ), 7.44 (d, 2H, J¼ 8.20 Hz, H-3 0 and H-5 0 ), 7.40 (d, 1H, J¼ 2.50 Hz, H-8), 7.11 (dd, 1H, J¼ 9.20 and 2.50 Hz

, 155.8 (C-8a), vol.144, p.0

. Maldi-tof-ms-m,

, 79 (d, 2H, J¼ 8.25 Hz, H-2' and H-6'), 7.51 (d, 2H, J¼ 8.25 Hz, H-3'' and H-5''), 7.45 (d, 2H, J¼ 8.25 Hz, H-3' and H-5'), 7.38 (d, 1H, J¼ 2.50 Hz, H-8), 7.10 (dd, 1H, J¼ 9.20 and 2.50 Hz, H-6), vol.7

, C-6), 118.4 (C-4a), 108.0 (C-8, 155.8 (C-8a), vol.144, p.0

. Maldi-tof-ms-m,

, CDCl 3 ) 8.52 (d, 2H, J¼ 8.30 Hz, H-2 00 and H-6 00 ), 7.89 (d, 1H, J¼ 9.30 Hz, H-5), 7.72 (d, 2H, J¼ 8.30 Hz, H-2 0 and H-6 0 ), 7.44 (d, 2H, J¼ 8.30 Hz, H-3 00 and H-5 00 ), 7.38 (d, 2H, J¼ 8.30 Hz, H-3 0 and H-5 0 ), 7.30 (d, 1H, J¼ 2.30 Hz, H-8), 7.02 (dd, 1H, J¼ 9.30 and 2.30 Hz

, 13C NMR d (75 MHz, CDCl 3 ) 168.1 (C-7), vol.164, p.0

. Maldi-tof-ms-m,

, CDCl 3 ) 8.55 (d, 2H, J¼ 8.20 Hz, H-2 00 and H-6 00 ), 7.92 (d, 1H, J¼ 9.10 Hz, H-5), 7.75 (d, 2H, J¼ 8.20 Hz, H-2 0 and H-6 0 ), 7.46 (d, 2H, J¼ 8.20 Hz, H-3 00 and H-5 00 ), 7.39 (d, 2H, J¼ 8.20 Hz, H-3 0 and H-5 0 ), 7.34 (d, 1H, J¼ 2.50 Hz, H-8), 7.05 (dd, 1H, J¼ 9.10 and 2.50 Hz

, C-4), 155.8 (C-8a), 13C NMR d (75 MHz, CDCl 3 ) 168.3 (C-7), 165.0 (C-2), vol.162, pp.129-136

, C-4a), vol.129, pp.121-124

. Maldi-tof-ms-m, -methylpiperazin-1-yl)ethyl)aminomethyl]phenylgquinazoline (3r) Yellow oil (89%); 1 H NMR d (300 MHz, 30 Hz, H-5), 7.83 (d, 2H, J¼ 8.40 Hz, H-2 0 and H-6 0 ), 7.53 (d, 2H, J¼ 8.40 Hz, H-3 00 and H-5 00 ), 7.46 (d, 2H, J¼ 8.40 Hz, H-3 0 and H-5 0 ), vol.7

, 13C NMR d (75 MHz, CDCl 3 ) 168.4 (C-7), 165.1 (C-2), 162.1 (C-4), 155.8 (C-8a), vol.144, p.0

. Maldi-tof-ms-m, -dimethylaminopropyl)aminomethyl]phenylgquinazoline (3 s) Yellow oil (60%); 1 H NMR d (300 MHz, .13 (m, 2H, H-6 0 and H-2 0 ), 7.91 (dd, 1H, J¼ 8.20 and 1.20 Hz, H-5), 7.80 (dd, 1H, J¼ 1.40 and 1.40 Hz, H-2 00 ), 7.72 (ddd, 1H, J¼ 8.20, 7.00 and 1.20 Hz, H-7, vol.8, pp.17-25

, C-8a), vol.150, pp.127-133

. Maldi-tof-ms-m, -methylpiperazin-1-yl)propyl)aminomethyl]phenylg quinazoline(3t) Pale-yellow oil (88%); 1 H NMR d (300 MHz, 20 Hz, H-8), 8.06 (dd, 1H, J¼ 8.40 and 1.20 Hz, H-5), 7.84 (ddd, 1H, J¼ 8.40, 7.20 and 1.20 Hz, H-7), 7.81 (dd, 1H, J¼ 1.40 and 1.40 Hz, p.0

, 13C NMR d (75 MHz, CDCl 3 ) 169.8 (C-2), 161.5 (C-4), 153.2 (C-8a), vol.142, p.0

. Maldi-tof-ms-m, CDCl 3 ) 8.58 (dd, 1H, J¼ 1.50 and 1.50 Hz, H-2 0 ), 8.56 (ddd, 1H, J¼ 7.80, 1.50 and 1.50 Hz, H-6 0 ), dd, 1H, J¼ 8.70 and 1.10 Hz, H-8), 8.08 (dd, 1H, J¼ 8.70 and 1.10 Hz, H-5), 7.87 (ddd, 1H, J¼ 8.70, 7.20 and 1.10 Hz, H-7), 7.81 (dd, 1H, J¼ 1.50 and 1.50 Hz, vol.8, p.0

, References 1. World Health Organization, World malaria report, 2018.

S. Yeung, D. Socheat, and V. S. Moorthy, Artemisinin resistance on the Thai-Cambodian border, Lancet, vol.374, pp.1418-1437, 2009.

O. M?-uller, S. E. , A. Meissner, and P. , Artemisinin resistance on the Thai-Cambodian border, Lancet, vol.374, p.1419, 2009.

F. Ariey, B. Witkowski, and C. Amaratunga, A molecular marker of artemisinin-resistant Plasmodium falciparum malaria, Nature, vol.505, pp.50-55, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-00921203

, World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy, 2018.

, World Health Organization. Guidelines for the treatment of malaria, 2015.

D. De, F. M. Krogstad, and F. B. Cogswell, Aminoquinolines that circumvent resistance in Plasmodium falciparum in vitro, Am J Trop Med Hyg, vol.55, pp.579-83, 1996.

R. G. Ridley, W. Hofheinz, and H. Matile, 4-aminoquinoline analogs of chloroquine with shortened side chains retain activity against chloroquine-resistant Plasmodium falciparum, Antimicrob Agents Chemother, vol.40, pp.1846-54, 1996.

S. Rout and R. K. Mahapatra, Plasmodium falciparum: multidrug resistance, Chem Biol Drug Des, vol.93, pp.737-59, 2019.

E. A. Ashley and A. P. Phyo, Drugs in development for malaria, Drugs, vol.78, pp.861-79, 2018.

Y. Q. Hu, C. Gao, and S. Zhang, Quinoline hybrids and their antiplasmodial and antimalarial activities, Eur J Med Chem, vol.139, pp.22-47, 2017.

S. M. Hussaini, Therapeutic significance of quinolines: a patent review, Expert Opin Ther Pat, vol.26, pp.1201-1222, 2016.

A. R. Parhizgar and A. Tahghighi, Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review, Iran J Med Sci, vol.42, pp.115-143, 2017.

X. Nqoro, N. Tobeka, and B. A. Aderibigbe, Quinoline-based hybrid compounds with antimalarial activity, Molecules, vol.22, p.2268, 2017.

S. Deshpande and B. Kuppast, 4-Aminoquinolines: an overview of antimalarial chemotherapy, Med Chem, vol.06, pp.1-11, 2016.

S. Kumar, R. K. Singh, and B. Patial, Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria, J Enzyme Inhib Med Chem, vol.31, pp.173-86, 2016.

S. Manohar, M. Tripathi, and D. S. Rawat, 4-aminoquinoline based molecular hybrids as antimalarials: an overview, Curr Top Med Chem, vol.14, pp.1706-1739, 2014.

P. M. O'neill, S. A. Ward, and N. G. Berry, A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs, Curr Top Med Chem, vol.6, pp.479-507, 2006.

N. A. Malmquist, T. A. Moss, and S. Mecheri, Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum, Proc Natl Acad Sci, vol.109, pp.16708-16721, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01103641

T. Fr?-ohlich and S. B. Tsogoeva, In Vivo and in vitro optimization of screening antimalarial hits toward lead molecules for preclinical development, J Med Chem, vol.59, pp.9668-71, 2016.

P. R. Gilson, C. Tan, and K. E. Jarman, Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity, J Med Chem, vol.60, pp.1171-88, 2017.

B. Baragaña, N. R. Norcross, and C. Wilson, Discovery of a quinoline-4-carboxamide derivative with a novel mechanism of action, multistage antimalarial activity, and potent in vivo efficacy, J Med Chem, vol.59, pp.9672-85, 2016.

A. S. Lubin, A. Rueda-zubiaurre, and H. Matthews, Development of a photo-cross-linkable diaminoquinazoline inhibitor for target identification in Plasmodium falciparum, ACS Infect Dis, vol.13, pp.523-553, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02321900

S. Burza, S. L. Croft, M. Boelaert, and . Leishmaniasis, Lancet, vol.392, pp.951-70, 2018.

J. Alvar, C. Canavate, and B. Gutierrez-solar, Leishmania and human immunodeficiency virus coinfection: the first 10 years, Clin Microbiol Rev, vol.10, pp.298-319, 1997.

, World Health Organization. WHO Technical report series n 975, research priorities for chagas disease, human African trypanosomiasis and leishmaniasis, World Health Organization, p.116, 2012.

, World Health Organization. WHO interim guidelines for the treatment of gambiense human African trypanosomiasis, 2019.

J. Guillon, P. Grellier, and M. Labaied, Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, J Med Chem, vol.47, pp.1997-2009, 2004.

J. Guillon, I. Forfar, and M. Mamani-matsuda, Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents, Bioorg Med Chem, vol.15, pp.194-210, 2007.

J. Guillon, I. Forfar, and V. Desplat, Synthesis of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents by Suzuki-Miyaura cross-coupling reactions, J Enzyme Inhib Med Chem, vol.22, pp.541-550, 2007.

J. Guillon, S. Moreau, and E. Mouray, New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity, Bioorg Med Chem, vol.16, pp.9133-9177, 2008.
URL : https://hal.archives-ouvertes.fr/mnhn-02070080

J. Guillon, E. Mouray, and S. Moreau, New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity-Part II, Eur J Med Chem, vol.46, pp.2310-2336, 2011.
URL : https://hal.archives-ouvertes.fr/mnhn-02047399

L. Ronga, D. Favero, M. Cohen, and A. , Design, synthesis and biological evaluation of novel 4-alkapolyenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents-part III, Eur J Med Chem, vol.81, pp.378-93, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01563740

J. Guillon, A. Cohen, and N. M. Gueddouda, Design, synthesis and antimalarial activity of novel bisfN-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropylgamine derivatives, J Enzyme Inhib Med Chem, vol.32, pp.547-63, 2017.

J. Guillon, A. Cohen, and R. N. Das, Design, synthesis, and antiprotozoal evaluation of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives, Chem Biol Drug Des, vol.91, pp.974-95, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01690455

E. P. Calvo, M. Wasserman, and . G-, Quadruplex ligands: potent inhibitors of telomerase activity and cell proliferation in Plasmodium falciparum, Mol Biochem Parasitol, vol.207, pp.33-41, 2016.

R. Tidwell, D. Boykin, and M. Ismail, Dicationic compounds which selectively recognize G-quadruplex DNA, Patent EP-1792613-A2, 2007.

W. M. Leeder, N. F. Hummel, . G?, and . Hu, Multiple G-quartet structures in pre-edited mRNAs suggest evolutionary driving force for RNA editing in trypanosomes, Sci Rep, vol.6, p.29810, 2016.

R. Lombraña, A. Alvarez, and J. M. Fern-andez-justel, Transcriptionally driven DNA replication program of the human parasite leishmania major, Cell Rep, vol.16, pp.1774-86, 2016.

E. Bottius, N. Bakhsis, and A. Scherf, Plasmodium falciparum telomerase: de novo telomere addition to telomeric and nontelomeric sequences and role in chromosome healing, Mol Cell Biol, vol.18, pp.919-944, 1998.

D. K. Raj, B. R. Das, and A. P. Dash, Identification of telomerase activity in gametocytes of Plasmodium falciparum, Biochem Biophys Res Commun, vol.309, pp.685-693, 2003.

A. De-cian, P. Grellier, and E. Mouray, Plasmodium telomeric sequences: structure, stability and quadruplex targeting by small compounds, ChemBioChem, vol.9, pp.2730-2739, 2008.
URL : https://hal.archives-ouvertes.fr/mnhn-02070079

R. E. Desjardins, C. J. Canfield, and J. D. Haynes, Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique, Antimicrob Agents Chemother, vol.16, pp.710-728, 1979.

T. N. Bennett, M. Paguio, and B. Gligorijevic, Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy, Antimicrob Agents Chemother, vol.48, pp.1807-1817, 2004.

D. J. Bacon, C. Latour, and C. Lucas, Comparison of a SYBR green I-based assay with a histidine-rich protein II enzymelinked immunosorbent assay for in vitro antimalarial drug efficacy testing and application to clinical isolates, Antimicrob Agents Chemother, vol.51, pp.1172-1180, 2007.

H. Kaddouri, S. Nakache, and . Houz-e-s, Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration, Antimicrob Agents Chemother, vol.50, pp.3343-3352, 2006.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J Immunol Methods, vol.65, pp.55-63, 1983.

S. A. Emami, Z. Taghizadeh-rabe, S. Ahi, and A. , Inhibitory activity of eleven artemisia species from Iran against Leishmania major parasites, Iran J Basic Med Sci, vol.15, pp.807-818, 2012.

B. R?-az, M. Iten, -. Grether, and Y. Uhler, The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro, Acta Trop, vol.68, pp.139-186, 1997.

T. Baltz, D. Baltz, and C. Giroud, Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense, EMBO J, vol.4, pp.1273-1280, 1985.

A. De-cian, L. Guittat, and M. Kaiser, Fluorescence-based melting assays for studying quadruplex ligands, Methods, vol.42, pp.183-95, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00258193

E. Belmonte-reche, M. Inez-garc-ia, M. Gu-edin, and A. , Gquadruplex identification in the genome of protozoan parasites points to naphthalene diimide ligands as new antiparasitic agents, J Med Chem, vol.61, pp.1231-1271, 2018.

S. Le, J. Josse, and F. Husson, FactoMineR: an R package for multivariate analysis, J Stat Softw, vol.25, pp.1-18, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00359835

A. Zeileis and T. Hothorn, Diagnostic checking in regression relationships, R News, vol.2, pp.7-10, 2002.

. R-core-team, R: a language and environment for statistical computing. R foundation for statistical computing, 2013.

S. Achelle, J. Rodr?-guez-l-opez, R. Guen, and F. , Synthesis and photophysical studies of a series of quinazoline chromophores, J Org Chem, vol.79, pp.7564-71, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01059430

J. V. Jun, E. J. Petersson, and D. M. Chenoweth, Rational design and facile synthesis of a highly tunable quinoline-based fluorescent small-molecule scaffold for live cell imaging, J Am Chem Soc, vol.140, pp.9486-93, 2018.

D. Kang, H. Kim, and C. Shin, Compound for organic optoelectric device, organic light emitting device containing same, and display device containing said organic light emitting device, 2015.