T. Vo-dinh, Biomedical Photonics Handbook, 2003.

W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning fluorescence microscopy Science, vol.248, pp.73-79, 1990.

J. Pawel, Handbook of Biological Confocal Microscopy, pp.1-985, 2006.

B. Masters and S. , Confocal microscopy and multi-photon excitation of human skin in vivo, Opt. Express, vol.8, pp.2-10, 2001.

P. So, C. Dong, B. Masters, and K. Berland, Twophoton excitation fluorescence microscopy, Annu. Rev. Biomed. Eng, vol.2, pp.399-429, 2000.

K. Konig, Multiphoton microscopy in life sciences, J. Microsc, vol.200, pp.83-104, 2000.

W. Zipfel, R. Williams, and W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences, Nat. Biotechnol, vol.21, pp.1369-77, 2003.

M. Oheim, D. Michael, M. Geisbauer, D. Madsen, and R. Chow, Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches Adv, Drug Deliv. Rev, vol.58, pp.788-808, 2006.

A. Diaspro, G. Chirico, and M. Collini, Two-photon fluorescence excitation and related techniques in biological microscopy, Q. Rev. Biophys, vol.38, pp.97-166, 2005.

A. Ustione and D. Piston, A simple introduction to multiphoton microscopy, J. Microsc, vol.243, pp.221-227, 2011.

B. Masters and S. , Antecedents of two-photon excitation laser scanning microscopy, Microsc. Res. Tech, vol.63, pp.3-11, 2004.

D. Piston, Imaging living cells and tissues by twophoton excitation microscopy, Cell Biol, vol.9, pp.66-75, 1999.

B. Masters, P. So, K. Kim, C. Buehler, and E. Gratton, Multiphoton excitation microscopy, confocal microscopy, and spectroscopy of living cells and tissues; functional metabolic imaging of human skin in vivo Multiphoton Excitation Microscopy, Methods in Enzymology, vol.307, pp.513-549, 1999.

W. Denk, D. Piston, and W. Webb, Two-photon molecular excitation in laser-scanning microscopy Handbook of Biological Confocal Microscopy, J Pawley, 1995.

J. Squier and M. Muller, High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging, Rev. Sci. Instrum, vol.72, pp.2855-67, 2001.

J. Girkin, Optical physics enables advances in multiphoton imaging, J. Phys. D: Appl. Phys, vol.36, pp.250-258, 2003.

J. Girkin and G. Mcconnell, Advances in laser sources for confocal and multiphoton microscopy Microsc, Res. Tech, vol.67, pp.8-14, 2005.

C. Xu and F. Wise, Recent advances in fibre lasers for nonlinear microscopy Nat, Photon, vol.7, pp.875-82, 2013.

F. Wise, Laser for nonlinear microscopy, Cold Spring Harb. Protoc, pp.192-201, 2013.

M. Young, J. Field, K. Sheetz, R. Bartels, and J. Squier, A pragmatic guide to multiphoton microscope design, vol.7, pp.276-378, 2015.

W. Mohler, A. Millard, and P. Campagnola, Second harmonic generation imaging of endogenous structural proteins Methods, vol.29, pp.97-109, 2003.

P. Campagnola and L. Loew, Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms, Nat. Biotechnol, vol.21, pp.1356-60, 2003.

G. Filippidis, C. Kouloumentas, D. Kapsokalyvas, G. Voglis, T. N. Papazoglou et al., Imaging of Caenorhabditis elegans samples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy, J. Phys. D: Appl. Phys, vol.38, pp.2625-2657, 2005.

J. Ogilvie, D. Débarre, X. Solinas, J. Martin, B. E. Joffre et al., Use of coherent control for selective two-photon fluorescence microscopy in live organisms, Opt. Express, vol.14, pp.759-66, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00018766

I. Pastirk, D. Cruz, J. Walowicz, C. Lozovoy, V. Dantus et al., Selective two-photon microscopy with shaped femtosecond pulses, Opt. Express, vol.11, pp.1695-701, 2003.

J. Tada, T. Kono, A. Suda, H. Mizuno, A. Miyawaki et al., Adaptively controlled supercontinuum pulse from a microstructure fiber for two-photon excited fluorescence microscopy, Appl. Opt, vol.46, pp.3023-3053, 2007.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak et al., Three-photon excitation in fluorescence microscopy, J. Biomed. Opt, vol.1, pp.71-75, 1996.

D. Sinefeld, H. Paudel, D. Ouzounov, T. Bifano, and C. Xu, Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence, Opt. Express, vol.23, pp.31472-83, 2015.

P. Mahou, M. Zimmerley, K. Loulier, K. Matho, G. Labroille et al., Multicolor two-photon tissue imaging by wavelength mixing, Nat. Methods, vol.9, pp.815-836, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00324345

N. Horton, K. Wang, D. Kobat, C. Clark, F. Wise et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain Nat, Photon. Lett, vol.7, pp.205-214, 2013.

K. Wang, N. Horton, and C. Xu, Going deep: brain imaging with multi-photon microscopy Opt, Photonics News, vol.24, pp.32-41, 2013.

P. Markowicz, S. He, and P. Prasad, Direct fourphoton excitation of amplified spontaneous emission in a nonlinear organic chromophore, Opt. Lett, vol.30, pp.1369-71, 2005.

A. Zumbusch, G. Holtom, and X. Xie, Threedimensional vibrational imaging by coherent anti-Stokes Raman scattering, Phys. Rev. Lett, vol.82, pp.4142-4147, 1999.

J. Cheng, Y. Jia, Z. G. Xie, and X. , Laserscanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology, Biophys. J, vol.83, pp.502-511, 2002.

R. Amor, G. Norris, J. Dempster, W. Amos, and G. Mcconnell, A compact instrument for adjusting laser beams to be accurately coincident and coaxial and its use in biomedical imaging using wave-mixed laser sources, Rev. Sci. Instrum, vol.83, p.83705, 2012.

H. Kano and H. Hamaguchi, In vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber, Opt. Express, vol.14, pp.2798-804, 2006.

C. Freudiger, M. W. Saar, B. Lu, S. Holtom, G. He et al., Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy Science, vol.322, pp.1857-61, 2008.

H. Rigneault and D. Gachet, Background-free coherent Raman imaging: the CARS and SRS contrast mechanisms Raman Imaging, vol.168, pp.347-72, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00737486

Q. Sun, Y. Li, S. He, C. Situ, Z. Wu et al., Labelfree multimodal nonlinear optical microscopy reveals fundamental insights of skeletal muscle development, Biomed. Opt. Express, vol.5, pp.158-66, 2014.

D. Débarre, W. Supatto, A. Pena, A. Fabre, T. Tordjmann et al., Imaging lipid bodies in cells and tissues using thirdharmonic generation microscopy, Nat. Methods, vol.3, pp.47-53, 2006.

A. Krmpot, G. Tserevelakis, B. Muri?, F. G. Panteli?, and D. , 3D imaging and characterization of microlenses and microlens arrays using nonlinear microscopy, J. Phys. D: Appl. Phys, vol.46, 2013.

S. Renaud, K. Weizhang, and G. Mcconnell, Characterization of microscope objective lenses from 1400 to 1650 nm to evaluate performance for long-wavelength nonlinear microscopy applications, Microsc. Res. Tech, vol.71, pp.517-537, 2008.

Y. Shen, The Principles of Nonlinear Optics, 1984.

Y. Shen, The Principles of Nonlinear Optics, 2003.

R. Boyd, , 2003.

M. Goppert-mayer, Uber Elementarakte mit zwei Quantensprungen Ann. Phys, vol.401, pp.273-94, 1931.

W. Kaiser, C. Garrett, and D. Wood, Fluorescence and optical maser effects in CaF 2 : Sm++ Phys. Rev, vol.123, pp.766-76, 1961.

, Developmental resource for biophysical imaging optoelectronics www

J. Mütze, V. Iyer, J. Macklin, J. Colonell, B. Karsh et al., Excitation spectra and brightness optimization of twophoton excited probes, Biophys. J, vol.102, pp.934-978, 2012.

K. Heinze, A. Koltermann, and P. Schwille, Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis Proc, Natl Acad. Sci, vol.97, pp.10377-82, 2000.

C. Xu and W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, JOSA B, vol.13, pp.481-91, 1996.

W. Zipfel, R. Williams, C. R. , Y. Nikitin, A. Hyman et al., Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation Proc, Natl Acad. Sci, vol.100, pp.7075-80, 2003.

J. Lakowicz, Fluorescence Spectroscopy, 2006.

C. Sheppard and R. Kompfner, Resonant scanning optical microscope Appl. Opt, vol.17, pp.2879-82, 1978.

I. Freund and M. Deutsch, Second-harmonic microscopy of biological tissue, Opt. Lett, vol.11, pp.94-100, 1986.

J. Mertz and L. Moreaux, Second-harmonic generation by focused excitation in inhomogeneously distributed scatterers, Opt. Commun, vol.196, pp.325-355, 2001.

K. Burke, R. Dawes, M. Cheema, A. Van-hove, D. Benoit et al., Secondharmonic generation scattering directionality predicts tumor cell motility in collagen gels, J. Biomed. Opt, vol.20, p.51024, 2015.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberg, Nonlinear scanning laser microscopy by third harmonic generation, Appl. Phys. Lett, vol.70, pp.922-926, 1997.

H. Rigneault and E. Andresen, Nat. Photon, vol.6, pp.802-805, 2012.

N. Djaker, D. Marguet, and H. Rigneault, Microscopie Raman Stimulée (CARS) Principe et applications Medecine/Sciences, vol.22, pp.853-861, 2006.

W. Supatto, T. Truong, D. D. Beaurepaire, and E. , Advances in multiphoton micrscopy for imaging embryos, Curr. Opin. Genet. Dev, vol.21, pp.538-586, 2011.

L. Sordillo, Y. Pu, S. Pratavieira, Y. Budansky, and . Alfano-r-r, Deep optical imaging of tissue using the second and third near-infrared spectral windows, J. Biomed. Opt, vol.19, p.56004, 2014.

M. Butko, M. Drobizhev, N. Makarov, A. Reban, B. Brinkman et al., Simultaneous multipleexcitation multiphoton microscopy yields increased imaging sensitivity and specificity, BMC Biotechnol, 1920.

A. Negrean and H. Mansvelder, Optimal lens design and use in laser-scanning microscopy, Biomed. Opt. Express, vol.5, pp.1588-609, 2014.

M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, Two-photon microscopy in brain tissue: parameters influencing the imaging depth, J. Neurosci. Methods, vol.111, pp.29-37, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02372491

M. Gu, Resolution in three-photon fluorescence scanning microscopy, Opt. Lett, vol.21, pp.988-90, 1996.

S. Hell, The 2015 super-resolution microscopy roadmap, J. Phys. D: Appl. Phys, vol.48, p.443001, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390051

M. Dyba, T. Klar, J. S. Hell, and S. , Ultrafast dynamics microscopy Appl. Phys. Lett, vol.77, pp.597-606, 2000.

B. Flusberg, E. Cocker, W. Piyawattanametha, J. Jung, E. Cheung et al., Fiber-optic fluorescence imaging Nat. Methods, vol.2, pp.941-50, 2005.

S. Tang, W. Jung, D. Mccormick, T. Xie, J. Su et al., Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning, J. Biomed. Opt, vol.14, p.34005, 2009.

L. Huang, A. Mills, Y. Zhao, D. Jones, and S. Tang, Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser, Biomed. Opt. Express, vol.7, pp.1948-56, 2016.

B. Flusberg, J. Jung, E. Cocker, E. Anderson, and M. Schnitzer, Opt. Lett, vol.30, pp.2272-2276, 2005.

M. Straub and S. Hell, Fluorescence lifetime threedimensional microscopy with picosecond precision using a multifocal multiphoton microscope, Appl. Phys. Lett, vol.73, p.1769, 1998.

M. Durst, G. Zhu, and C. Xu, Simultaneous spatial and temporal focusing in nonlinear microscopy, Opt. Commun, vol.281, pp.1296-805, 2008.

K. Wang and P. Qiu, Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy, J. Biomed. Opt, vol.20, p.2293065, 2015.

C. Rowlands, D. Park, O. Bruns, K. Piatkevich, D. Fukumura et al., Wide-field three-photon excitation in biological samples, Light Sci. Appl, vol.6, pp.1-9, 2017.

C. Xu, W. Zipfel, J. Shear, R. Williams, and W. Webb, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy Proc, Natl Acad. Sci. USA, vol.93, pp.10763-10771, 1996.

D. Peyrot, Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration, Biomed. Opt. Express, vol.3, pp.840-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01153711

P. Friedl, K. Wolf, U. Andrian, and G. Harms, Biological second and third harmonic generation microscopy Curr, Protocols Cell Biol, issue.4, 2007.

P. Talamond, J. Verdeil, and G. Conejero, Secondary metabolite localization by autofluorescence in living plant cells, Molecules, vol.20, pp.5024-5061, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141100

M. Strupler, A. Pena, M. Hernest, P. Tharaux, J. Martin et al., Second harmonic imaging and scoring of collagen in fibrotic tissues, Opt. Express, vol.15, pp.4054-65, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00824058

D. Kirkpatrick, Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy Cancer Epidermiol, Biomarkers Prev, vol.16, pp.2048-57, 2007.

C. Odin, T. Guilbert, A. Alkilani, O. Boryskina, V. Fleury et al., Collagen and myosin characterization by orientation field second harmonic microscopy, Opt. Express, vol.16, pp.16151-65, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00672471

S. Kantelhardt, J. Leppert, J. Krajewski, N. Petkus, E. Reusche et al., Imaging of brain and brain tumor specimens by time-resolved multiphoton excitation microscopy ex vivo Neuro Oncol, vol.9, pp.103-115, 2007.

B. Najari, Pilot study of the correlation of multiphoton tomography of ex vivo human testis with histology, J. Urol, vol.188, pp.538-581, 2012.

W. Hu, G. Zhao, C. Wang, J. Zhang, and L. Fu, Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues, PLoS One, vol.7, p.37962, 2012.

Y. Chen, J. Chen, H. Chen, Z. Hong, X. Zhu et al., Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains, J. Biomed. Opt, vol.19, p.96008, 2014.

H. Hamzeh, C. Lefort, and F. Pain, Abi Haidar D 2015 Optimization and characterization of nonlinear excitation and collection through a gradient-index lens for high-resolution nonlinear endomicroscopy, Optics Letters, vol.40, pp.808-812

P. Brockman, C. Bair, J. Barnes, R. Hess, and E. Browell, Pulsed injection control of a titanium-doped sapphire laser, Opt. Lett, vol.11, pp.712-716, 1986.

P. Theer, M. Hasan, and W. Denk, Two-photon imaging to a depth of 1000 mm in living brains by use of a Ti:Al 2 O 3 regenerative amplifier, Opt. Lett, vol.28, pp.1022-1026, 2003.

X. Liu, A. Svane, J. Laegsgaard, H. Tu, S. Boppart et al., Progress in Cherenkov femtosecond fiber lasers, J. Phys. D: Appl. Phys, vol.49, p.23001, 2016.

R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers, Opt. Lett, vol.19, pp.201-204, 1994.

S. Tang, Z. Chen, G. Tempea, and B. Tromberg, Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy, J. Biomed. Opt, vol.11, p.20501, 2006.

C. Lefort, M. Kalashyan, G. Ducourthial, T. Mansuryan, R. O'connor et al., Sub-30 fs pulse compression and pulse shaping at the output of a 2 m-long optical fiber in the near-infrared range, JOSA B, vol.31, pp.2317-2341, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063850

H. Mojzisova and J. Vermot, When multiphoton microscopy sees near infrared, Curr. Opin. Genet. Dev, vol.21, pp.549-57, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667425

J. Tragardh, G. Robb, R. Amor, W. Amos, J. Dempster et al., Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser, J. Microsc, vol.259, pp.210-218, 2015.

V. Andresen, S. Alexander, W. Heupel, M. Hirschberg, R. Hoffman et al., Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging, Curr. Opin. Biotechnol, vol.20, pp.54-62, 2009.

C. Wang, L. Qiao, F. He, Y. Chenng, and Y. Xu, Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source, J. Microsc, vol.243, pp.179-83, 2011.

L. Wokosiny, V. Centonzey, C. S. White, and J. , Three-photon excitation fluorescence imaging of biological specimens using an all-solid-state laser Bioimaging, vol.4, pp.208-222, 1996.

S. Tang, J. Liu, T. Krasieva, C. Z. Tromberg, and B. , Developing compact multiphoton systems using femtosecond fiber lasers, J. Biomed. Opt. Lett, vol.14, p.30508, 2009.

K. Svoboda, W. Denk, W. Knox, and S. Tsuda, Twophoton-excitation scanning microscopy of living neurons with a saturable Bragg reflector mode-locked diodepumped Cr:LiSrAlFl laser, Opt. Lett, vol.21, pp.1411-1414, 1996.

I. Chen, S. Chu, C. Sun, P. Cheng, and B. Lin, Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources, vol.34, pp.1251-66, 2002.

G. Mcconnell and E. Riis, Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2, Phys. Med. Biol, vol.49, pp.4757-63, 2004.

M. Chan, T. Liu, S. Tai, and C. Sun, Compact fiber-delivered Cr:forsterite laser for nonlinear light microscopy, J. Biomed. Opt, vol.10, p.54006, 2005.

S. Sakad?i?, U. Demirbas, T. Mempel, A. Moore, S. Ruvinskaya et al., Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser, Opt. Express, vol.16, pp.20848-63, 2008.

P. Antal and R. Szipocs, Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy, Appl. Phys. B, vol.107, pp.17-22, 2012.

J. Rehbinder, L. Bruckner, A. Wipfler, T. Buckup, and M. Motzkus, Multimodal nonlinear optical microscopy with shaped 10 fs pulses, Opt. Express, vol.22, pp.28790-28797, 2014.

C. Lefort, H. Hamzeh, F. Louradour, F. Pain, A. Haidar et al., Characterization, comparison, and choice of a commercial double-clad fiber for nonlinear endomicroscopy, J. Biomed. Opt, vol.19, p.76005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01063851

A. Rohrbacher, O. Olarte, V. Villamaina, P. Loza-alvarez, and B. Resan, Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses, Opt. Express, vol.25, pp.10684-77, 2017.

M. Balu, I. Saytashev, J. Hou, M. Dantus, and B. Tromberg, Sub-40 fs, 1060 nm Yb-fiber laser enhances penetration depth in nonlinear optical microscopy of human skin, J. Biomed. Opt, vol.20, p.120501, 2015.

H. Chen, Z. Haider, J. Lim, S. Xu, Z. Yang et al., 3 GHz, Yb-fiber laser-based, few-cycle ultrafast source at the Ti:sapphire laser wavelength, Opt. Lett, vol.38, pp.4927-4957, 2013.

Z. Zhang, D. Popa, V. Wittwer, S. Milana, T. Hasan et al., All-fiber nonlinearity-and dispersion-managed dissipative soliton nanotube modelocked laser, Appl. Phys. Lett, vol.107, p.241107, 2015.

Y. Oshima, H. Horiuch, N. Honkura, A. Hikita, T. Ogata et al., Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system Laser Surg, vol.46, pp.563-72, 2014.

A. Millard, P. Wieman, D. Fittinghoff, K. Wilson, J. Squier et al., Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source, Appl. Opt, vol.38, pp.7393-7400, 1999.

K. Kieu, S. Mehravar, R. Gowda, R. Norwood, and N. Peyghambarian, Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber, vol.4, pp.2187-95, 2013.

K. Harpel, R. Baker, B. Amirsolaimani, S. Mehravar, J. Vagner et al., Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy, J. Biomed. Opt, vol.7, pp.2849-59, 2013.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui et al., Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source Japan, J. Appl. Phys, vol.44, pp.167-176, 2005.

M. Connell and G. , Sequential confocal and multiphoton laser scanning microscopy using a single photonic crystal fibre based light source, Appl. Phys. B, vol.81, pp.783-789, 2005.

J. Unruh, E. Price, G. Molla, R. Stehno-bittek, L. Johnson et al., Two-photon microscopy with wavelength switchable fiber laser excitation, Opt. Express, vol.14, pp.9825-9856, 2006.

B. Von-vacano, T. Buckup, and M. Motzkus, In situ broadband pulse compression for multiphoton microscopy using a shaper-assisted collinear SPIDER, Opt. Lett, vol.31, pp.1154-1160, 2006.

K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano et al., Fourier-transform spectroscopy combined with a 5 fs broadband pulse for multispectral nonlinear microscopy, Phys. Rev. A, vol.77, p.63832, 2008.

D. Li, W. Zheng, and J. Qu, Opt. Lett, vol.34, pp.202-206, 2009.

Y. Liu, H. Tu, W. Benalcazar, E. Chaney, and S. Boppart, Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm, IEEE J. Sel. Top. Quantum Electron, vol.18, pp.1209-1223, 2012.

X. Liang and L. Fu, Enhanced self-phase modulation enables a 700-900 nm linear compressible continuum for multicolor two-photon microscopy, IEEE J. Sel. Top. Quantum Electron, vol.20, p.6800108, 2013.

M. Chan, C. Lien, J. Lu, and L. , High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy, Opt. Express, vol.22, pp.9498-507, 2014.

P. Cadroas, All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy, J. Opt, vol.19, p.65506, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611185

J. Bewersdorf and S. Hell, Picosecond pulsed twophoton imaging with repetition rates of 200 and 400, MHz J. Microsc, vol.191, pp.28-38, 1997.

A. Jenei, A. Kirsch, V. Subramaniam, D. Arndt-jovin, and T. Jovin, Picosecond multiphoton scanning nearfield optical microscopy, vol.76, pp.1092-100, 1999.

M. Kuramoto, N. Kitajima, H. Guo, Y. Furushima, M. Ikeda et al., Two-photon fluorescence bioimaging with an allsemiconductor laser picosecond pulse source, Opt. Lett, vol.32, pp.2726-2734, 2007.

H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato et al., Opt. Express, vol.14, pp.3467-71, 2006.

J. Palero, V. Boer, J. Vijverberg, and H. Gerritsen, Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source, Opt. Express, vol.13, pp.5363-5371, 2005.

H. Yokoyama, A. Sato, H. Guo, K. Sato, M. Mure et al., Nonlinear microscopy optical-pulse sources based on mode-locked semiconductor lasers, Opt. Express, vol.10, pp.17752-17760, 2008.

W. Tao, B. H. Gu, and M. , Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths, J. Biomed. Opt, vol.16, p.56010, 2011.

R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa et al., Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030 nm picosecond pulse laser Sci, Rep, vol.3, p.1014, 2013.

R. Kawakami, K. Sawada, Y. Kusama, Y. Fang, S. Kanazawa et al., In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gains-witched laser diode, Biomed. Opt. Express, vol.6, pp.891-901, 2015.

R. Niederriter, B. Ozbay, G. Futia, E. Gibson, and J. Gopinath, Compact diode laser source for multiphoton biological imaging, Biomed. Opt. Express, vol.8, pp.315-337, 2017.

H. Segawa, M. Okuna, P. Leproux, V. Couderc, T. Ozawa et al., Multimodal imaging of living cells with multiplex coherent anti-stokes Raman scattering (CARS), third-order sum frequency generation (TSFG) and twophoton excitation fluorescence (TPEF) using a nanosecond white-light laser source, Anal. Sci, vol.31, pp.1-7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01321491

C. Lefort, R. O'connor, V. Blanquet, L. Magnol, H. Kano et al., Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source, J. Biophotonics, vol.9, pp.709-723, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321985

S. Karpf, M. Eibl, B. Sauer, F. Reinholz, G. Huttmann et al., Two-photon microscopy using fiber-based nanosecond excitation, Biomed. Opt. Express, vol.7, pp.2432-2472, 2016.

E. Florin, J. Horber, and E. Stelzer, Highresolution axial and lateral position sensing using twophoton excitation of fluorophores by a continuous-wave Nd:YAG laser, Appl. Phys. Lett, vol.69, pp.446-454, 1996.

S. Hell, M. Booth, S. Wilms, C. Schnetter, A. Kirsch et al., Two-photon nearand far-field fluorescence microscopy with continuouswave excitation, Opt. Lett, vol.23, pp.1238-1278, 1998.

X. Hou and W. Cheng, Single-molecule detection using continuous wave excitation of two-photon fluorescence, Opt. Lett, vol.36, pp.3185-3192, 2011.

N. Uzunbajakava and C. Otto, Combined Raman and continuous-wave-excited two-photon fluorescence cell imaging, Opt. Lett, vol.28, pp.2073-2078, 2003.

Z. Zhang, G. Sonek, X. Wei, C. Sun, M. Berns et al., Cell vialbility and DNA denaturation measurements by two-photon fluorescence excitation in CX Al:GaAs diode laser optical traps, J. Biomed. Opt, vol.4, pp.256-265, 1999.

M. Tirri, J. Vaarno, J. Soini, and P. Hanninen, Low cost lasers challenge ultrafast systems in two-photon excitation application, Opto-Electron. Rev, vol.11, pp.39-44, 2003.

K. Podgorski and G. Ranganathan, Brain heating during multi-photon microscopy, J. Neurophysiol, vol.116, pp.1012-1035, 2016.

A. Hopt and E. Neher, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J, vol.80, pp.2029-2065, 2001.

U. Tauer, Advantages and risks of multiphoton microscopy in physiology, Exp. Physiol, vol.87, pp.709-723, 2002.