D. S. , Ang would like to acknowledge the computing resource kindly supported by the Singapore's National Supercomputing Center under Project

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chem. Phys. Lett, vol.26, pp.163-166, 1974.

B. Yu, C. Cao, P. Li, M. Mao, Q. Xie et al., Sensitive and Simple Determination of Zwitterionic Morphine in Human Urine Based on Liquid-Liquid Micro-Extraction Coupled with Surface-Enhanced Raman Spectroscopy, Talanta, vol.186, pp.427-432, 2018.

J. Xu, D. Wu, Y. Li, J. Xu, Z. Gao et al., Plasmon-Triggered Hot-Spot Excitation on SERS Substrates for Bacterial Inactivation and in Situ Monitoring, ACS Appl. Mater. Interfaces, vol.10, pp.25219-25227, 2018.

W. Zhou, Y. Tian, B. Yin, and B. Ye, Simultaneous Surface-Enhanced Raman Spectroscopy Detection of Multiplexed Micro RNA Biomarkers, Anal. Chem, vol.89, pp.6120-6128, 2017.

Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad et al., Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues, ACS Nano, vol.11, pp.5558-5566, 2017.

L. A. Lane, X. Qian, and S. Nie, SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging, Chem. Rev, vol.115, pp.10489-10529, 2015.

S. Feng, Y. Hu, L. Ma, and X. Lu, Development of Molecularly Imprinted Polymers-Surface-Enhanced Raman Spectroscopy/Colorimetric Dual Sensor for Determination of Chlorpyrifos in Apple Juice, Sens Actuators B, vol.241, pp.750-757, 2017.

S. Ding, J. Yi, J. Li, B. Ren, D. Wu et al., Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials, Nat. Rev. Mate, vol.1, pp.16021-16022, 2016.

S. Schlücker, Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications, Angew. Chem., Int. Ed, vol.53, pp.4756-4795, 2014.

T. Jiang, G. Chen, X. Tian, S. Tang, J. Zhou et al., Construction of Long Narrow Gaps in Ag Nanoplates, J. Am. Chem. Soc, vol.140, pp.15560-15563, 2018.

W. Niu, Y. A. Chua, W. Zhang, H. Huang, and X. Lu, Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property, J. Am. Chem. Soc, vol.137, pp.10460-10463, 2015.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan et al.,

, Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis, Nano Lett, vol.16, pp.3675-3681, 2016.

G. Maiorano, L. Rizzello, M. A. Malvindi, S. S. Shankar, L. Martiradonna et al., Monodispersed and Size-Controlled Multibranched Gold Nanoparticles with Nanoscale Tuning of Surface Morphology, Nanoscale, vol.3, pp.2227-2232, 2011.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS), Phys. Rev. Lett, vol.78, pp.1667-1670, 1997.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering, Phys. Rev. Lett, vol.83, pp.4357-4360, 1999.

D. Millo, A. Bonifacio, M. R. Moncelli, V. Sergo, C. Gooijer et al., Characterization of Hybrid Bilayer Membranes on Silver Electrodes as Biocompatible SERS Substrates to Study Membrane-Protein Interactions, Colloids Surf. B, vol.81, pp.212-216, 2010.

M. Runowski, S. Goderski, J. Paczesny, M. Ksi??opolska-gocalska, A. Ekner-grzyb et al., Preparation of Biocompatible, Luminescent-Plasmonic Core/Shell Nanomaterials Based on Lanthanide and Gold Nanoparticles Exhibiting SERS Effects, J. Phys. Chem. C, vol.120, pp.23788-23798, 2016.

P. Wang, Q. Wu, F. Wang, Y. Zhang, L. Tong et al., Evaluating Cellular Uptake of Gold Nanoparticles in HL-7702 and HepG2 Cells for Plasmonic Photothermal Therapy, Nanomedicine, vol.13, pp.2245-2259, 2018.

M. Potara, S. Boca, E. Licarete, A. Damert, M. Alupei et al., Chitosan-coated Triangular Silver Nanoparticles as a Novel Class of Biocompatible, Highly Sensitive Plasmonic Platforms for Intracellular SERS Sensing and Imaging, Nanoscale, vol.5, pp.6013-6022, 2013.

L. Sun, H. Hu, D. Zhan, J. Yan, L. Liu et al., Plasma Modified MoS 2 Nanoflakes for Surface Enhanced Raman Scattering, Small, vol.10, pp.1090-1095, 2014.

L. Jiang, X. Liang, T. You, P. Yin, H. Wang et al., /Au Nanosheets. Spectrochim. Acta A, vol.142, pp.50-54, 2015.

L. Yang, M. Gong, X. Jiang, D. Yin, X. Qin et al., Investigation on SERS of Different Phase Structure TiO 2 Nanoparticles, J. Raman Spectrosc, vol.46, pp.287-292, 2015.

X. Jiang, K. Song, X. Li, M. Yang, X. Han et al., Double Metal Co-Doping of TiO2 Nanoparticles for Improvement of their SERS Activity and Ultrasensitive Detection of Enrofloxacin: Regulation Strategy of Energy Levels, vol.2, pp.3099-3105, 2017.

X. Yu, R. Cai, Y. Song, Q. Gao, N. Pan et al., Graphene/TiO 2 Hybrid Layer for Simultaneous Detection and Degradation by a One-Step Transfer and Integration Method, vol.7, pp.14959-14965, 2017.

Y. Liu, Z. Gao, M. Chen, Y. Tan, and F. Chen, Enhanced Raman Scattering of CuPc Films on Imperfect WSe 2 Monolayer Correlated to Exciton and Charge-Transfer Resonances, Adv. Funct. Mater, vol.28, pp.1805710-1805711, 2018.

W. Liu, H. Bai, X. Li, W. Li, J. Zhai et al., Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer, J. Phys. Chem. Lett, vol.9, pp.4096-4100, 2018.

G. Ou, Y. Xu, B. Wen, R. Lin, B. Ge et al., Tuning Defects in Oxides at Room Temperature by Lithium Reduction, Nat. Comm, vol.9, pp.1302-1303, 2018.

A. Otto, The 'Chemical' (Electronic) Contribution to Surface-Enhanced Raman Scattering, J. Raman Spectrosc, vol.36, pp.497-509, 2005.

W. Yin, L. Yan, J. Yu, G. Tian, L. Zhou et al., High-Throughput Synthesis of Single-Layer MoS 2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy, ACS Nano, vol.8, pp.6922-6933, 2014.

M. Mehrali, E. Moghaddam, S. F. Shirazi, S. Baradaran, M. Mehrali et al., Synthesis, Mechanical Properties, and in Vitro Biocompatibility with Osteoblasts of Calcium Silicate-Reduced Graphene Oxide Composites, ACS Appl. Mater. Interfaces, vol.6, pp.3947-3962, 2014.

L. Wen, L. Chen, S. Zheng, J. Zeng, G. Duan et al., Ultrasmall Biocompatible WO 3?x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers, Adv. Mater, vol.28, pp.5072-5079, 2016.

S. J. Hurst, H. C. Fry, D. J. Gosztola, and T. Rajh, Utilizing Chemical Raman Enhancement: A Route for Metal Oxide Support-Based Biodetection, J. Phys. Chem. C, vol.115, pp.620-630, 2011.

W. Ji, B. Zhao, and Y. Ozaki, Semiconductor Materials in Analytical Applications of Surface-Enhanced Raman Scattering, J. Raman. Sprctrosc, vol.47, pp.51-58, 2016.

J. Zhou, N. S. Xu, and Z. L. Wang, Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures, Adv. Mater, vol.18, pp.2432-2435, 2006.

F. Avila, C. Ruano, I. Lopez-tocon, J. F. Arenas, J. Soto et al., How the Electrode Potential Controls the Selection Rules of the Charge Transfer Mechanism of SERS, Chem. Commun, vol.47, pp.4213-4215, 2011.

D. Wu, J. Li, B. Ren, and Z. Tian, Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures, Chem. Soc. Rev, vol.37, pp.1025-1041, 2008.

S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang et al., Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies, vol.6, pp.1038-1039, 2017.

G. Sinha, L. E. Depero, and I. Alessandri, Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods, ACS Appl. Mater. Interfaces, vol.3, pp.2557-2563, 2011.

Y. Cao, K. Qin, L. Zhu, X. Qian, X. Zhang et al.,

, Deposition Assisted Formation of Wafer-Scale Double-Layer Metal Nanoparticles with Tunable Nanogap for Surface-Enhanced Raman Scattering, vol.7, pp.5161-5168, 2017.

S. Ben-jaber, W. J. Peveler, R. Quesada-cabrera, E. Cortés, C. Sotelo-vazquez et al., Photo-Induced Enhanced Raman Spectroscopy for Universal Ultra-Trace Detection of Explosives, Pollutants and Biomolecules. Nat. Comm, vol.7, pp.12189-12190, 2016.

Y. Yin, P. Miao, Y. Zhang, J. Han, X. Zhang et al., Significantly Increased Raman Enhancement on MoX 2 (X=S, Se) Monolayers upon Phase Transition, Adv. Funct. Mater, vol.27, pp.1606694-1606695, 2017.

H. Wu, H. Wang, and G. Li, Metal Oxide Semiconductor SERS-Active Substrates by Defect Engineering, vol.142, pp.326-335, 2017.

Y. Tian, S. Cong, W. Su, H. Chen, Q. Li et al., Synergy of W 18 O 49 and Polyaniline for Smart Supercapacitor Electrode Integrated with Energy Level Indicating Functionality, Nano Lett, vol.14, pp.2150-2156, 2014.

M. Trapatseli, D. Carta, A. Regoutz, A. Khiat, A. Serb et al., Conductive Atomic Force Microscopy Investigation of Switching Thresholds in Titanium Dioxide Thin Films, J. Phys. Chem. C, vol.119, pp.11958-11964, 2015.

Q. Wang, A. Puntambekar, and V. Chakrapani, Vacancy-Induced Semiconductor-Insulator-Metal Transitions in Nonstoichiometric Nickel and Tungsten Oxides, Nano Lett, vol.16, pp.7067-7077, 2016.

C. Gu, C. Zhou, D. S. Ang, X. Ju, R. Gu et al., The Role of the Disordered HfO 2 Network in the High-? n-MOSFET Shallow Electron Trapping, J. Appl. Phys, vol.125, pp.25705-25706, 2019.

J. Sungpanich, T. Thongtem, and S. Thongtem, Large-ScaleSynthesis of WO 3 Nanoplates by a Microwave-Hydrothermal Method, Ceram. Int, vol.38, pp.1051-1055, 2012.

S. P. Centeno, I. López-tocón, J. F. Arenas, J. Soto, and J. C. Otero, Selection Rules of the Charge Transfer Mechanism of Surface-Enhanced Raman Scattering: The Effect of the Adsorption on the Relative Intensities of Pyrimidine Bonded to Silver Nanoclusters, J. Phys. Chem. B, vol.110, pp.14916-14922, 2006.

H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata,

. Rhodamine-6g-adsorbed-on and . Silver, Analysis of Tip-Enhanced Raman Spectroscopy, J. Phys. Chem. B, vol.109, pp.5012-5020, 2005.

L. Jensen and G. C. Schatz, Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory, J. Phys. Chem. A, vol.110, pp.5973-5977, 2006.

M. B. Johansson, A. Mattsson, S. Lindquist, G. A. Niklasson, and L. Österlund, The Importance of Oxygen Vacancies in Nanocrystalline WO 3-x Thin Films Prepared by DC Magnetron Sputtering for Achieving High Photoelectrochemical Efficiency, J. Phys. Chem. C, vol.121, pp.7412-7420, 2017.

T. Mutumi, K. Masaru, O. Hiroki, and M. Kenji, A New Cleaning Technique for X-Ray Masks in Alkaline Solutions by Direct Control of Electrochemical Potential, Jpn. J. Appl. Phys, vol.39, pp.6923-6930, 2000.

A. Alkauskas, P. Broqvist, A. Pasquarello, A. Soultati, P. Argitis et al., Fast Recovery of the High Work Function of Tungsten and Molybdenum Oxides via Microwave Exposure for Efficient Organic Photovoltaics, J. Phys. Chem. Lett, vol.101, pp.1871-1879, 2008.

H. Zhao, Y. Zhang, G. Li, F. Tian, H. Tang et al., Rhodamine B-Sensitized BiOCl Hierarchical Nanostructure for Methyl Orange Photodegradation, RSC Adv, vol.6, pp.7772-7779, 2016.

V. K. Gupta, N. Mergu, and A. K. Singh, Rhodamine-Derived Highly Sensitive and Selective Colorimetric and Off-on Optical Chemosensors for Cr3+, Sens Actuators B: Chem, vol.220, pp.420-432, 2015.

H. Liu, F. Zeng, Y. Lin, G. Wang, and F. Pan, Correlation of Oxygen Vacancy Variations to Band Gap Changes in Epitaxial ZnO Thin Films, Appl. Phys. Lett, vol.102, pp.181908-181909, 2013.

G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B, vol.47, issue.23, pp.558-561, 1993.

D. Vanderbilt, Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, vol.41, pp.7892-7895, 1990.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid Functionals Based on a Screened Coulomb Potential, J. Chem. Phys, vol.118, pp.8207-8215, 2003.