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Abstract—In this paper, matching networks of �nite degree
are computed. Additionally the presented results are compared
with the lower fundamental bounds available in the literature.
These bounds are used to certify the optimality of the provided
matching networks in function of the attained matching toler-
ance. To illustrate the presented results, two different examples
of matching problems are presented.

Index Terms—antennas, �lter synthesis, matching, bounds.

I. I NTRODUCTION

Bounds for the problem of matching have been already
computed by numerous authors in the literature. These bounds
were �rst introduced in [1] where the problem of matching
an RC-load is considered as the design of a lowpass �ltering
network where anRC-element is �xed. In [2] the problem was
extended to the case of a generic load by using theDarlington
equivalentand reformulated in [3] as a complex interpola-
tion problem. Additionally in [4] the matching problem was
solved optimally by considering the broader class of in�nite
dimension functionsH 1 and therefore providing hard bounds
for the matching problem in �nite dimension. Nevertheless
the computation of matching networks of �nite degree which
approach as closely as possible the lower bounds is still a
current issue.

In [5] a method based on convex optimisation was pre-
sented. This technique provides us, with hard lower bound
for the problem of matching when a matching load of �nite
degree is considered. These bounds can be considered as an
extension of the results computed in [4] to the case of a
matching network of �nite degree.

In this work we provide a study comparing the hard lower
bounds to the best matching tolerance attainable for a given
load together with the result provided by a rational matching
network of a given degree. In this context, two examples of
matching network synthesis are presented. In the �rst one we
consider the problem of antenna matching while in the second
one we deal with a double matching problem by designing
the input and output matching network for a LNA (low noise
ampli�er).

II. T HEORY

In this paper we use a novel algorithm for the computation
of matching networks which is based on the pointwise match-

ing algorithm introduced in [6]. This algorithm is implemented
as part of the matlab toolboxPUMA-HF (see [7]). The
matching problem considered in this work aims to minimise
the re�ection of the power transmitted to a given load within a
speci�ed frequency band. The load is represented as a 2-port
device L in Fig. 1. Usually the power is transmitted to the
load through a �lterF that rejects out of band signals. Both
devices, the �lter together with the load compose the global
systemS.

A. The matching problem

In this section we state the matching problem as the
minimisation over the passbandI of the magnitude of the
global re�ection jS11 j which is expressed as the pseudohy-
perbolic distance betweenF22 andL 11. We have therefore the
following problem

Problem 1 (Matching problem).

Find:  opt = min
F22

max
s2 I

�
�
�
�

F22 � L 11

1 � F22L 11

�
�
�
� (1)

Additionally we suppose that the zeros of the functionsF21

andF12 are �xed as it is customary in classical �lter synthesis.
Note that in [5] hard lower bounds min have been provided

for the solution to Problem 1 such that

 min �  opt (2)

This bound min are the result of a fundamental limitation
imposed by load on the global systems that can be realised.
Note for instance that in the case of a frequency invariant load
we have min = 0 , namely any matching level is possible.
These lower bounds can now be used to certify the optimality
of the computed matching networks.

Load
(L)

Filter
(F)

F22 L 11F11 L 22

S11 S22

Fig. 1. Global system composed of the cascade of the matching �lter with
the load and re�ection coef�cients.



III. E XAMPLES

A. Small superdirective antenna

As a �rst and simple example, we consider the problem of
matching the small super-directive antenna presented in [8] in
the intervalI de�ned as

I = [870; 900] MHz: (3)

The re�ection L 11 of this antenna is shown in �g. 2. Note
the mismatch of the re�ectionL 11 around870 MHz
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Fig. 2. Superdirective small antenna

In �g. 3 we show the lower bound min as well as the
obtained matching level opt as a function of the degreeK
of the matching �lter fromK = 1 to K = 12. These values
are also listed in table I. Note the signi�cant improvement
of the re�ection level around870 MHz for any value ofK
obtaining a matching level between� 6:5 and � 9 dB. It is
also interesting to remark the proximity of the obtained level
 opt to the lower limit  min . Indeed in �g. 4 we plot the
extremely small optimality gap, which quickly converges
towards zero. This fact together with the local optimality of
the �lter that provides the matching level opt certify the
obtained result.

B. Double matching of a low noise ampli�er

In this section, we design the input and output matching
network for a low-noise ampli�er based around the transistor
in�neon BFP520. We can see in Fig. 6 the ADS schematic of
the transistor with the biasing network which has been used
to simulate scattering parameters and noise parameters of the
transistor.

The schematic of the desired system is shown in Fig. 7. The
frequency band considered in this example is mainly limited
by the design of the biasing network. In this case we target
the band between 2 GHz and 4 GHz:

I = [2GHz; 4GHz]

Degree (K)  opt dB  min dB

1 -6.5028 -7.0389

2 -7.4389 -7.7777

3 -7.9916 -8.1925

4 -8.3218 -8.4512

5 -8.5351 -8.6237

6 -8.6815 -8.7444

7 -8.7859 -8.8320

8 -8.8629 -8.8977

9 -8.9212 -8.9480

10 -8.9663 -8.98745

11 -9.0020 -9.0188

12 -9.0306 -9.0442
TABLE I

OBTAINED MATCHING LEVEL VS LOWER BOUND.
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Fig. 3. Bounds for the re�ection level
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Fig. 5. Global responseS11 and transducer gain obtained with the load in
Fig. 2

Fig. 6. In�neon transistor BFP520 with the biasing network.

1) Input matching: First we design the input matching
network of degre 1, such that the transistor inputseesthe
re�ection coef�cient Sopt which provides the optimal noise
�gure for the LNA. We do this by synthesising a matching
network to match the re�ectionSopt . The matching network
will show at the output the best approximation of the function
Sopt (Fig. 8). Thus we obtain a matching network matched at
the input to50
 and synthesizingSopt at the output.

Fig. 7. Schematic of the global system with input and output matching
networks.

Fig. 8. Input matching network.
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Fig. 9. Output re�ection of the intput matching network.

2) Output matching: Once we have the input matching
network, we compute theS22 parameter of the combination
of the input matching with the transistor and compute the
matching �lter for the total network shown in Fig. 10. Note

Fig. 10. Output matching problem.

that this design approach will not work every time. It is
possible that stability issues are encountered at this stage, but
working with an unconditionally stable transistor+biasing will
resolve this issue.

Now we compute the matching network for the transistor
output by means of Problem 1. We compare in this case the
result obtained with a network of degreeK from 1 to 6.
Figure 11 shows the level opt obtained with the computed
matching network as well as the lower hard limit min , both
listed in table II. We obtain a matching level below� 20dB
in any case. Similarly to the input matching network, we pick
a degreeK = 1 for the output matching network, obtaining
the response shown in Fig. 12.

Degree (K)  opt dB  min dB

1 -33.4608 -26.0317

2 -42.1157 -36.6857

3 -48.8488 -45.3051

4 -53.6380 -51.4173

5 -57.0200 -55.4438

6 -59.5237 -58.2677
TABLE II

OBTAINED MATCHING LEVEL VS LOWER BOUND FOR THELNA' S OUTPUT
MATCHING .
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Fig. 11. Lower bounds and obtained re�ection level for the output matching
problem.
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Fig. 12. Input re�ection of the output matching network.

3) Global system:We can now use the synthesized input
and output matching networks, both of them chosen to be of
degree 1 to reconstruct the global system of the LNA shown in
Fig. 7. We obtain the schematic in Fig. 14 where the input and
output matching network have been included. Furthermore we
provide in Fig. 13 the global response of the network shown
in Fig. 14. It can be noted the obtained matching level on
the parameterS22 which is below -20dB within the the whole
bandI = [2GHz; 4GHz].

IV. CONCLUSION

In this work a practical algorithm for the computation of
matching networks of �nite degree is introduced and several
examples are presented. The computed matching networks are
certi�ed by comparing the provided matching level with the
fundamental lower bounds available in the literature.
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Fig. 14. Global schematic of the LNA with input and output matching networks.


