Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

A Novel Machine Learning Approach of Hemorrhage Stroke Detection in Differential Microwave Head Imaging System

Abstract : In this paper, brain hemorrhage stroke detection approach using microwave-imaging system with a novel machine-learning based post-processing method is presented. In order to create a circular array based microwave imaging system sixteen elements of the modified bowtie antennas are simulated in CST medium around the full head phantom. In order to radiate in desired band from 0.5-5 GHz an appropriate matching medium is designed. In addition, a hierarchical preprocessing method is employed to calibrate the reflected signals. In the processing section, a confocal imagereconstructing algorithm based is used. Finally, a new machine learning technique including discrete wavelet transform (DWT) and principle component analysis (PCA) for feature extraction and reduction, respectively. In addition, support vector machine (SVM) is used for segmentation and clustering of hemorrhage stroke detection from reconstructed image is employed. Simulated results are presented to validate the effectiveness of the proposed method for precisely localizing and classifying bleeding targets.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-unilim.archives-ouvertes.fr/hal-03047739
Contributeur : Stéphane Bila <>
Soumis le : mardi 8 décembre 2020 - 22:39:12
Dernière modification le : mercredi 16 décembre 2020 - 03:35:38

Fichier

1570603503.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03047739, version 1

Collections

Citation

Mohammad Ojaroudi, Stéphane Bila, M. Salimitorkamani. A Novel Machine Learning Approach of Hemorrhage Stroke Detection in Differential Microwave Head Imaging System. 2020 European Conference on Antennas and Propagation, Mar 2020, Copenhaguen, Denmark. ⟨hal-03047739⟩

Partager

Métriques

Consultations de la notice

15

Téléchargements de fichiers

8